mirror of https://github.com/malarinv/tacotron2
Compare commits
3 Commits
ac5ffcf6d5
...
ea11c5199e
| Author | SHA1 | Date |
|---|---|---|
|
|
ea11c5199e | |
|
|
78eed2d295 | |
|
|
009b87e716 |
8
setup.py
8
setup.py
|
|
@ -12,12 +12,12 @@ with open("HISTORY.rst") as history_file:
|
||||||
|
|
||||||
requirements = [
|
requirements = [
|
||||||
"klepto==0.1.6",
|
"klepto==0.1.6",
|
||||||
"numpy==1.16.4",
|
"numpy~=1.16.4",
|
||||||
"inflect==0.2.5",
|
"inflect==0.2.5",
|
||||||
"librosa==0.6.0",
|
"librosa==0.6.0",
|
||||||
"scipy==1.3.0",
|
"scipy~=1.3.0",
|
||||||
"Unidecode==1.0.22",
|
"Unidecode==1.0.22",
|
||||||
"torch==1.1.0",
|
"torch~=1.1.0",
|
||||||
"PyAudio==0.2.11"
|
"PyAudio==0.2.11"
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
@ -53,7 +53,7 @@ setup(
|
||||||
test_suite="tests",
|
test_suite="tests",
|
||||||
tests_require=test_requirements,
|
tests_require=test_requirements,
|
||||||
url="https://github.com/malarinv/tacotron2",
|
url="https://github.com/malarinv/tacotron2",
|
||||||
version="0.2.0",
|
version="0.3.0",
|
||||||
zip_safe=False,
|
zip_safe=False,
|
||||||
entry_points={"console_scripts": ("tts_debug = taco2.tts:main",)},
|
entry_points={"console_scripts": ("tts_debug = taco2.tts:main",)},
|
||||||
)
|
)
|
||||||
|
|
|
||||||
|
|
@ -35,7 +35,7 @@ class HParams(object):
|
||||||
# Audio Parameters #
|
# Audio Parameters #
|
||||||
################################
|
################################
|
||||||
max_wav_value = 32768.0
|
max_wav_value = 32768.0
|
||||||
sampling_rate = 16000
|
sampling_rate = 22050
|
||||||
filter_length = 1024
|
filter_length = 1024
|
||||||
hop_length = 256
|
hop_length = 256
|
||||||
win_length = 1024
|
win_length = 1024
|
||||||
|
|
|
||||||
|
|
@ -84,8 +84,8 @@ class STFT(torch.nn.Module):
|
||||||
forward_basis *= fft_window
|
forward_basis *= fft_window
|
||||||
inverse_basis *= fft_window
|
inverse_basis *= fft_window
|
||||||
|
|
||||||
self.register_buffer("forward_basis", forward_basis.float())
|
self.register_buffer("forward_basis", forward_basis.float().to(DEVICE))
|
||||||
self.register_buffer("inverse_basis", inverse_basis.float())
|
self.register_buffer("inverse_basis", inverse_basis.float().to(DEVICE))
|
||||||
|
|
||||||
def transform(self, input_data):
|
def transform(self, input_data):
|
||||||
num_batches = input_data.size(0)
|
num_batches = input_data.size(0)
|
||||||
|
|
@ -121,10 +121,10 @@ class STFT(torch.nn.Module):
|
||||||
return magnitude, phase
|
return magnitude, phase
|
||||||
|
|
||||||
def inverse(self, magnitude, phase):
|
def inverse(self, magnitude, phase):
|
||||||
|
phase = phase.to(DEVICE)
|
||||||
recombine_magnitude_phase = torch.cat(
|
recombine_magnitude_phase = torch.cat(
|
||||||
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
||||||
)
|
)
|
||||||
|
|
||||||
inverse_transform = F.conv_transpose1d(
|
inverse_transform = F.conv_transpose1d(
|
||||||
recombine_magnitude_phase,
|
recombine_magnitude_phase,
|
||||||
Variable(self.inverse_basis, requires_grad=False),
|
Variable(self.inverse_basis, requires_grad=False),
|
||||||
|
|
@ -144,11 +144,10 @@ class STFT(torch.nn.Module):
|
||||||
# remove modulation effects
|
# remove modulation effects
|
||||||
approx_nonzero_indices = torch.from_numpy(
|
approx_nonzero_indices = torch.from_numpy(
|
||||||
np.where(window_sum > tiny(window_sum))[0]
|
np.where(window_sum > tiny(window_sum))[0]
|
||||||
)
|
).to(DEVICE)
|
||||||
window_sum = torch.autograd.Variable(
|
window_sum = torch.autograd.Variable(
|
||||||
torch.from_numpy(window_sum), requires_grad=False
|
torch.from_numpy(window_sum), requires_grad=False
|
||||||
)
|
).to(DEVICE)
|
||||||
window_sum = window_sum.to(DEVICE)
|
|
||||||
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
||||||
approx_nonzero_indices
|
approx_nonzero_indices
|
||||||
]
|
]
|
||||||
|
|
|
||||||
54
taco2/tts.py
54
taco2/tts.py
|
|
@ -15,9 +15,9 @@ from .text import text_to_sequence
|
||||||
from .denoiser import Denoiser
|
from .denoiser import Denoiser
|
||||||
from .audio_processing import griffin_lim, postprocess_audio
|
from .audio_processing import griffin_lim, postprocess_audio
|
||||||
|
|
||||||
TTS_SAMPLE_RATE = 22050
|
|
||||||
OUTPUT_SAMPLE_RATE = 22050
|
OUTPUT_SAMPLE_RATE = 22050
|
||||||
# OUTPUT_SAMPLE_RATE = 16000
|
GL_ITERS = 30
|
||||||
|
VOCODER_MODEL = "wavglow"
|
||||||
|
|
||||||
# config from
|
# config from
|
||||||
# https://github.com/NVIDIA/waveglow/blob/master/config.json
|
# https://github.com/NVIDIA/waveglow/blob/master/config.json
|
||||||
|
|
@ -37,7 +37,7 @@ class TTSModel(object):
|
||||||
def __init__(self, tacotron2_path, waveglow_path, **kwargs):
|
def __init__(self, tacotron2_path, waveglow_path, **kwargs):
|
||||||
super(TTSModel, self).__init__()
|
super(TTSModel, self).__init__()
|
||||||
hparams = HParams(**kwargs)
|
hparams = HParams(**kwargs)
|
||||||
hparams.sampling_rate = TTS_SAMPLE_RATE
|
self.hparams = hparams
|
||||||
self.model = Tacotron2(hparams)
|
self.model = Tacotron2(hparams)
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
self.model.load_state_dict(torch.load(tacotron2_path)["state_dict"])
|
self.model.load_state_dict(torch.load(tacotron2_path)["state_dict"])
|
||||||
|
|
@ -78,7 +78,7 @@ class TTSModel(object):
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
self.synth_speech = klepto.safe.inf_cache(cache=self.k_cache)(
|
self.synth_speech = klepto.safe.inf_cache(cache=self.k_cache)(
|
||||||
self.synth_speech_gl
|
self.synth_speech_fast
|
||||||
)
|
)
|
||||||
self.taco_stft = TacotronSTFT(
|
self.taco_stft = TacotronSTFT(
|
||||||
hparams.filter_length,
|
hparams.filter_length,
|
||||||
|
|
@ -101,23 +101,47 @@ class TTSModel(object):
|
||||||
)
|
)
|
||||||
return mel_outputs_postnet
|
return mel_outputs_postnet
|
||||||
|
|
||||||
def synth_speech_array(self, text):
|
def synth_speech_array(self, text, vocoder):
|
||||||
mel_outputs_postnet = self.generate_mel_postnet(text)
|
mel_outputs_postnet = self.generate_mel_postnet(text)
|
||||||
|
|
||||||
with torch.no_grad():
|
if vocoder == "wavglow":
|
||||||
audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666)
|
with torch.no_grad():
|
||||||
audio_t = self.denoiser(audio_t, 0.1)[0]
|
audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666)
|
||||||
audio = audio_t[0].data.cpu().numpy()
|
audio_t = self.denoiser(audio_t, 0.1)[0]
|
||||||
|
audio = audio_t[0].data
|
||||||
|
elif vocoder == "gl":
|
||||||
|
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
||||||
|
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
|
||||||
|
spec_from_mel_scaling = 1000
|
||||||
|
spec_from_mel = torch.mm(mel_decompress[0], self.taco_stft.mel_basis)
|
||||||
|
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
|
||||||
|
spec_from_mel = spec_from_mel * spec_from_mel_scaling
|
||||||
|
spec_from_mel = (
|
||||||
|
spec_from_mel.cuda() if torch.cuda.is_available() else spec_from_mel
|
||||||
|
)
|
||||||
|
audio = griffin_lim(
|
||||||
|
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
|
||||||
|
self.taco_stft.stft_fn,
|
||||||
|
60,
|
||||||
|
)
|
||||||
|
audio = audio.squeeze()
|
||||||
|
else:
|
||||||
|
raise ValueError("vocoder arg should be one of [wavglow|gl]")
|
||||||
|
audio = audio.cpu().numpy()
|
||||||
return audio
|
return audio
|
||||||
|
|
||||||
def synth_speech(self, text):
|
def synth_speech(
|
||||||
audio = self.synth_speech_array(text)
|
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
|
||||||
|
):
|
||||||
|
audio = self.synth_speech_array(text, VOCODER_MODEL)
|
||||||
|
|
||||||
return postprocess_audio(
|
return postprocess_audio(
|
||||||
audio, src_rate=TTS_SAMPLE_RATE, dst_rate=OUTPUT_SAMPLE_RATE
|
audio, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate, tempo=speed
|
||||||
)
|
)
|
||||||
|
|
||||||
def synth_speech_gl(self, text, griffin_iters=60):
|
def synth_speech_fast(
|
||||||
|
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
|
||||||
|
):
|
||||||
mel_outputs_postnet = self.generate_mel_postnet(text)
|
mel_outputs_postnet = self.generate_mel_postnet(text)
|
||||||
|
|
||||||
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
||||||
|
|
@ -129,13 +153,13 @@ class TTSModel(object):
|
||||||
audio = griffin_lim(
|
audio = griffin_lim(
|
||||||
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
|
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
|
||||||
self.taco_stft.stft_fn,
|
self.taco_stft.stft_fn,
|
||||||
griffin_iters,
|
GL_ITERS,
|
||||||
)
|
)
|
||||||
audio = audio.squeeze()
|
audio = audio.squeeze()
|
||||||
audio = audio.cpu().numpy()
|
audio = audio.cpu().numpy()
|
||||||
|
|
||||||
return postprocess_audio(
|
return postprocess_audio(
|
||||||
audio, tempo=0.6, src_rate=TTS_SAMPLE_RATE, dst_rate=OUTPUT_SAMPLE_RATE
|
audio, tempo=speed, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue