Compare commits

..

3 Commits

4 changed files with 49 additions and 26 deletions

View File

@ -12,12 +12,12 @@ with open("HISTORY.rst") as history_file:
requirements = [
"klepto==0.1.6",
"numpy==1.16.4",
"numpy~=1.16.4",
"inflect==0.2.5",
"librosa==0.6.0",
"scipy==1.3.0",
"scipy~=1.3.0",
"Unidecode==1.0.22",
"torch==1.1.0",
"torch~=1.1.0",
"PyAudio==0.2.11"
]
@ -53,7 +53,7 @@ setup(
test_suite="tests",
tests_require=test_requirements,
url="https://github.com/malarinv/tacotron2",
version="0.2.0",
version="0.3.0",
zip_safe=False,
entry_points={"console_scripts": ("tts_debug = taco2.tts:main",)},
)

View File

@ -35,7 +35,7 @@ class HParams(object):
# Audio Parameters #
################################
max_wav_value = 32768.0
sampling_rate = 16000
sampling_rate = 22050
filter_length = 1024
hop_length = 256
win_length = 1024

View File

@ -84,8 +84,8 @@ class STFT(torch.nn.Module):
forward_basis *= fft_window
inverse_basis *= fft_window
self.register_buffer("forward_basis", forward_basis.float())
self.register_buffer("inverse_basis", inverse_basis.float())
self.register_buffer("forward_basis", forward_basis.float().to(DEVICE))
self.register_buffer("inverse_basis", inverse_basis.float().to(DEVICE))
def transform(self, input_data):
num_batches = input_data.size(0)
@ -121,10 +121,10 @@ class STFT(torch.nn.Module):
return magnitude, phase
def inverse(self, magnitude, phase):
phase = phase.to(DEVICE)
recombine_magnitude_phase = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)
inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
Variable(self.inverse_basis, requires_grad=False),
@ -144,11 +144,10 @@ class STFT(torch.nn.Module):
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0]
)
).to(DEVICE)
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False
)
window_sum = window_sum.to(DEVICE)
).to(DEVICE)
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
approx_nonzero_indices
]

View File

@ -15,9 +15,9 @@ from .text import text_to_sequence
from .denoiser import Denoiser
from .audio_processing import griffin_lim, postprocess_audio
TTS_SAMPLE_RATE = 22050
OUTPUT_SAMPLE_RATE = 22050
# OUTPUT_SAMPLE_RATE = 16000
GL_ITERS = 30
VOCODER_MODEL = "wavglow"
# config from
# https://github.com/NVIDIA/waveglow/blob/master/config.json
@ -37,7 +37,7 @@ class TTSModel(object):
def __init__(self, tacotron2_path, waveglow_path, **kwargs):
super(TTSModel, self).__init__()
hparams = HParams(**kwargs)
hparams.sampling_rate = TTS_SAMPLE_RATE
self.hparams = hparams
self.model = Tacotron2(hparams)
if torch.cuda.is_available():
self.model.load_state_dict(torch.load(tacotron2_path)["state_dict"])
@ -78,7 +78,7 @@ class TTSModel(object):
)
else:
self.synth_speech = klepto.safe.inf_cache(cache=self.k_cache)(
self.synth_speech_gl
self.synth_speech_fast
)
self.taco_stft = TacotronSTFT(
hparams.filter_length,
@ -101,23 +101,47 @@ class TTSModel(object):
)
return mel_outputs_postnet
def synth_speech_array(self, text):
def synth_speech_array(self, text, vocoder):
mel_outputs_postnet = self.generate_mel_postnet(text)
with torch.no_grad():
audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666)
audio_t = self.denoiser(audio_t, 0.1)[0]
audio = audio_t[0].data.cpu().numpy()
if vocoder == "wavglow":
with torch.no_grad():
audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666)
audio_t = self.denoiser(audio_t, 0.1)[0]
audio = audio_t[0].data
elif vocoder == "gl":
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
spec_from_mel_scaling = 1000
spec_from_mel = torch.mm(mel_decompress[0], self.taco_stft.mel_basis)
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
spec_from_mel = spec_from_mel * spec_from_mel_scaling
spec_from_mel = (
spec_from_mel.cuda() if torch.cuda.is_available() else spec_from_mel
)
audio = griffin_lim(
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
self.taco_stft.stft_fn,
60,
)
audio = audio.squeeze()
else:
raise ValueError("vocoder arg should be one of [wavglow|gl]")
audio = audio.cpu().numpy()
return audio
def synth_speech(self, text):
audio = self.synth_speech_array(text)
def synth_speech(
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
):
audio = self.synth_speech_array(text, VOCODER_MODEL)
return postprocess_audio(
audio, src_rate=TTS_SAMPLE_RATE, dst_rate=OUTPUT_SAMPLE_RATE
audio, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate, tempo=speed
)
def synth_speech_gl(self, text, griffin_iters=60):
def synth_speech_fast(
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
):
mel_outputs_postnet = self.generate_mel_postnet(text)
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
@ -129,13 +153,13 @@ class TTSModel(object):
audio = griffin_lim(
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
self.taco_stft.stft_fn,
griffin_iters,
GL_ITERS,
)
audio = audio.squeeze()
audio = audio.cpu().numpy()
return postprocess_audio(
audio, tempo=0.6, src_rate=TTS_SAMPLE_RATE, dst_rate=OUTPUT_SAMPLE_RATE
audio, tempo=speed, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate
)