mirror of https://github.com/malarinv/tacotron2
tested gl/wavglow working
parent
78eed2d295
commit
ea11c5199e
|
|
@ -84,8 +84,8 @@ class STFT(torch.nn.Module):
|
|||
forward_basis *= fft_window
|
||||
inverse_basis *= fft_window
|
||||
|
||||
self.register_buffer("forward_basis", forward_basis.float())
|
||||
self.register_buffer("inverse_basis", inverse_basis.float())
|
||||
self.register_buffer("forward_basis", forward_basis.float().to(DEVICE))
|
||||
self.register_buffer("inverse_basis", inverse_basis.float().to(DEVICE))
|
||||
|
||||
def transform(self, input_data):
|
||||
num_batches = input_data.size(0)
|
||||
|
|
@ -121,10 +121,10 @@ class STFT(torch.nn.Module):
|
|||
return magnitude, phase
|
||||
|
||||
def inverse(self, magnitude, phase):
|
||||
phase = phase.to(DEVICE)
|
||||
recombine_magnitude_phase = torch.cat(
|
||||
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
||||
)
|
||||
|
||||
inverse_transform = F.conv_transpose1d(
|
||||
recombine_magnitude_phase,
|
||||
Variable(self.inverse_basis, requires_grad=False),
|
||||
|
|
@ -144,11 +144,10 @@ class STFT(torch.nn.Module):
|
|||
# remove modulation effects
|
||||
approx_nonzero_indices = torch.from_numpy(
|
||||
np.where(window_sum > tiny(window_sum))[0]
|
||||
)
|
||||
).to(DEVICE)
|
||||
window_sum = torch.autograd.Variable(
|
||||
torch.from_numpy(window_sum), requires_grad=False
|
||||
)
|
||||
window_sum = window_sum.to(DEVICE)
|
||||
).to(DEVICE)
|
||||
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
||||
approx_nonzero_indices
|
||||
]
|
||||
|
|
|
|||
19
taco2/tts.py
19
taco2/tts.py
|
|
@ -108,7 +108,7 @@ class TTSModel(object):
|
|||
with torch.no_grad():
|
||||
audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666)
|
||||
audio_t = self.denoiser(audio_t, 0.1)[0]
|
||||
audio = audio_t[0].data.cpu().numpy()
|
||||
audio = audio_t[0].data
|
||||
elif vocoder == "gl":
|
||||
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
||||
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
|
||||
|
|
@ -116,25 +116,32 @@ class TTSModel(object):
|
|||
spec_from_mel = torch.mm(mel_decompress[0], self.taco_stft.mel_basis)
|
||||
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
|
||||
spec_from_mel = spec_from_mel * spec_from_mel_scaling
|
||||
spec_from_mel = (
|
||||
spec_from_mel.cuda() if torch.cuda.is_available() else spec_from_mel
|
||||
)
|
||||
audio = griffin_lim(
|
||||
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
|
||||
self.taco_stft.stft_fn,
|
||||
60,
|
||||
)
|
||||
audio = audio.squeeze()
|
||||
audio = audio.cpu().numpy()
|
||||
else:
|
||||
raise ValueError("vocoder arg should be one of [wavglow|gl]")
|
||||
audio = audio.cpu().numpy()
|
||||
return audio
|
||||
|
||||
def synth_speech(self, text, speed: 1.0, sample_rate=OUTPUT_SAMPLE_RATE):
|
||||
def synth_speech(
|
||||
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
|
||||
):
|
||||
audio = self.synth_speech_array(text, VOCODER_MODEL)
|
||||
|
||||
return postprocess_audio(
|
||||
audio, src_rate=self.hparams.sample_rate, dst_rate=sample_rate, tempo=speed
|
||||
audio, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate, tempo=speed
|
||||
)
|
||||
|
||||
def synth_speech_fast(self, text, speed: 1.0, sample_rate=OUTPUT_SAMPLE_RATE):
|
||||
def synth_speech_fast(
|
||||
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
|
||||
):
|
||||
mel_outputs_postnet = self.generate_mel_postnet(text)
|
||||
|
||||
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
||||
|
|
@ -152,7 +159,7 @@ class TTSModel(object):
|
|||
audio = audio.cpu().numpy()
|
||||
|
||||
return postprocess_audio(
|
||||
audio, tempo=speed, src_rate=self.hparams.sample_rate, dst_rate=sample_rate,
|
||||
audio, tempo=speed, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate
|
||||
)
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue