mirror of https://github.com/malarinv/tacotron2
parent
ea11c5199e
commit
5efb1e2758
48
taco2/tts.py
48
taco2/tts.py
|
|
@ -17,7 +17,7 @@ from .audio_processing import griffin_lim, postprocess_audio
|
|||
|
||||
OUTPUT_SAMPLE_RATE = 22050
|
||||
GL_ITERS = 30
|
||||
VOCODER_MODEL = "wavglow"
|
||||
VOCODER_WAVEGLOW, VOCODER_GL = "wavglow", "gl"
|
||||
|
||||
# config from
|
||||
# https://github.com/NVIDIA/waveglow/blob/master/config.json
|
||||
|
|
@ -74,11 +74,11 @@ class TTSModel(object):
|
|||
self.waveglow, n_mel_channels=hparams.n_mel_channels
|
||||
)
|
||||
self.synth_speech = klepto.safe.inf_cache(cache=self.k_cache)(
|
||||
self.synth_speech
|
||||
self._synth_speech
|
||||
)
|
||||
else:
|
||||
self.synth_speech = klepto.safe.inf_cache(cache=self.k_cache)(
|
||||
self.synth_speech_fast
|
||||
self._synth_speech_fast
|
||||
)
|
||||
self.taco_stft = TacotronSTFT(
|
||||
hparams.filter_length,
|
||||
|
|
@ -89,7 +89,7 @@ class TTSModel(object):
|
|||
mel_fmax=4000,
|
||||
)
|
||||
|
||||
def generate_mel_postnet(self, text):
|
||||
def _generate_mel_postnet(self, text):
|
||||
sequence = np.array(text_to_sequence(text, ["english_cleaners"]))[None, :]
|
||||
if torch.cuda.is_available():
|
||||
sequence = torch.autograd.Variable(torch.from_numpy(sequence)).cuda().long()
|
||||
|
|
@ -102,14 +102,14 @@ class TTSModel(object):
|
|||
return mel_outputs_postnet
|
||||
|
||||
def synth_speech_array(self, text, vocoder):
|
||||
mel_outputs_postnet = self.generate_mel_postnet(text)
|
||||
mel_outputs_postnet = self._generate_mel_postnet(text)
|
||||
|
||||
if vocoder == "wavglow":
|
||||
if vocoder == VOCODER_WAVEGLOW:
|
||||
with torch.no_grad():
|
||||
audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666)
|
||||
audio_t = self.denoiser(audio_t, 0.1)[0]
|
||||
audio = audio_t[0].data
|
||||
elif vocoder == "gl":
|
||||
elif vocoder == VOCODER_GL:
|
||||
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
||||
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
|
||||
spec_from_mel_scaling = 1000
|
||||
|
|
@ -122,7 +122,7 @@ class TTSModel(object):
|
|||
audio = griffin_lim(
|
||||
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
|
||||
self.taco_stft.stft_fn,
|
||||
60,
|
||||
GL_ITERS,
|
||||
)
|
||||
audio = audio.squeeze()
|
||||
else:
|
||||
|
|
@ -130,36 +130,28 @@ class TTSModel(object):
|
|||
audio = audio.cpu().numpy()
|
||||
return audio
|
||||
|
||||
def synth_speech(
|
||||
def _synth_speech(
|
||||
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
|
||||
):
|
||||
audio = self.synth_speech_array(text, VOCODER_MODEL)
|
||||
audio = self.synth_speech_array(text, VOCODER_WAVEGLOW)
|
||||
|
||||
return postprocess_audio(
|
||||
audio, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate, tempo=speed
|
||||
audio,
|
||||
src_rate=self.hparams.sampling_rate,
|
||||
dst_rate=sample_rate,
|
||||
tempo=speed,
|
||||
)
|
||||
|
||||
def synth_speech_fast(
|
||||
def _synth_speech_fast(
|
||||
self, text, speed: float = 1.0, sample_rate: int = OUTPUT_SAMPLE_RATE
|
||||
):
|
||||
mel_outputs_postnet = self.generate_mel_postnet(text)
|
||||
|
||||
mel_decompress = self.taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
||||
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
|
||||
spec_from_mel_scaling = 1000
|
||||
spec_from_mel = torch.mm(mel_decompress[0], self.taco_stft.mel_basis)
|
||||
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
|
||||
spec_from_mel = spec_from_mel * spec_from_mel_scaling
|
||||
audio = griffin_lim(
|
||||
torch.autograd.Variable(spec_from_mel[:, :, :-1]),
|
||||
self.taco_stft.stft_fn,
|
||||
GL_ITERS,
|
||||
)
|
||||
audio = audio.squeeze()
|
||||
audio = audio.cpu().numpy()
|
||||
audio = self.synth_speech_array(text, VOCODER_GL)
|
||||
|
||||
return postprocess_audio(
|
||||
audio, tempo=speed, src_rate=self.hparams.sampling_rate, dst_rate=sample_rate
|
||||
audio,
|
||||
tempo=speed,
|
||||
src_rate=self.hparams.sampling_rate,
|
||||
dst_rate=sample_rate,
|
||||
)
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue