skipping missing files
parent
b4ceeb4eed
commit
22d353f101
|
|
@ -6,11 +6,11 @@ import numpy as np
|
||||||
from spectro_gen import generate_aiff_spectrogram
|
from spectro_gen import generate_aiff_spectrogram
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
import itertools
|
import itertools
|
||||||
|
import os
|
||||||
import random
|
import random
|
||||||
import csv
|
import csv
|
||||||
import gc
|
import gc
|
||||||
|
|
||||||
|
|
||||||
def get_siamese_pairs(groupF1, groupF2):
|
def get_siamese_pairs(groupF1, groupF2):
|
||||||
group1 = [r for (i, r) in groupF1.iterrows()]
|
group1 = [r for (i, r) in groupF1.iterrows()]
|
||||||
group2 = [r for (i, r) in groupF2.iterrows()]
|
group2 = [r for (i, r) in groupF2.iterrows()]
|
||||||
|
|
@ -84,6 +84,8 @@ def create_spectrogram_data(audio_group='audio'):
|
||||||
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
||||||
# 'sunflowers'].reset_index(drop=True)
|
# 'sunflowers'].reset_index(drop=True)
|
||||||
file_names = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
file_names = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||||
|
audio_samples['file_exists'] = apply_by_multiprocessing(file_names,os.path.exists)
|
||||||
|
audio_samples = audio_samples[audio_samples['file_exists'] == False]
|
||||||
audio_samples['spectrogram'] = apply_by_multiprocessing(file_names,generate_aiff_spectrogram)#.apply(
|
audio_samples['spectrogram'] = apply_by_multiprocessing(file_names,generate_aiff_spectrogram)#.apply(
|
||||||
#generate_aiff_spectrogram)
|
#generate_aiff_spectrogram)
|
||||||
audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
||||||
|
|
@ -105,28 +107,8 @@ def create_tagged_data(audio_samples):
|
||||||
Y = to_onehot(Y_f.astype(np.int8))
|
Y = to_onehot(Y_f.astype(np.int8))
|
||||||
print('casting as array speech pairs')
|
print('casting as array speech pairs')
|
||||||
X = np.asarray(same_data + diff_data)
|
X = np.asarray(same_data + diff_data)
|
||||||
# del same_data
|
|
||||||
# del diff_data
|
|
||||||
# gc.collect()
|
|
||||||
return X,Y
|
return X,Y
|
||||||
|
|
||||||
# def create_padded_spectrogram(audio_group='audio'):
|
|
||||||
# audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
|
||||||
# daf_audio_samples = ddf.from_pandas(audio_samples,npartitions=4)
|
|
||||||
# def spec_size(s):
|
|
||||||
# return s['spectrogram'].shape[0]
|
|
||||||
# max_samples = daf_audio_samples.apply(spec_size,axis=1, meta=('x', 'i8')).max().compute()
|
|
||||||
# print('max sample count is ',max_samples)
|
|
||||||
# def padd_zeros_fixed(sp):
|
|
||||||
# x = sp['spectrogram']
|
|
||||||
# bounds = [(0, max_samples - x.shape[0]), (0, 0)]
|
|
||||||
# sp['spectrogram'] = np.lib.pad(x,bounds,'constant')
|
|
||||||
# return sp
|
|
||||||
# padded_audio_samples = daf_audio_samples.apply(padd_zeros_fixed,axis=1, meta=audio_samples).compute()#,max_samples=max_samples)
|
|
||||||
# import pdb; pdb.set_trace()
|
|
||||||
# padded_spectrogram = np.asarray(padded_audio_samples['spectrogram'].tolist())
|
|
||||||
# np.save('outputs/{}-padded_spectrogram.npy'.format(audio_group),padded_spectrogram)
|
|
||||||
|
|
||||||
def create_speech_pairs_data(audio_group='audio'):
|
def create_speech_pairs_data(audio_group='audio'):
|
||||||
audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||||
# sample_size = audio_samples['spectrogram'][0].shape[1]
|
# sample_size = audio_samples['spectrogram'][0].shape[1]
|
||||||
|
|
@ -139,26 +121,11 @@ def create_speech_pairs_data(audio_group='audio'):
|
||||||
np.random.shuffle(X)
|
np.random.shuffle(X)
|
||||||
np.random.set_state(rng_state)
|
np.random.set_state(rng_state)
|
||||||
np.random.shuffle(Y)
|
np.random.shuffle(Y)
|
||||||
# p = np.random.permutation(len(X))
|
|
||||||
# X = X_i[p]
|
|
||||||
# Y = Y_i[p]
|
|
||||||
print('pickling X/Y')
|
print('pickling X/Y')
|
||||||
np.save('outputs/{}-train-X.npy'.format(audio_group), X)
|
np.save('outputs/{}-train-X.npy'.format(audio_group), X)
|
||||||
np.save('outputs/{}-train-Y.npy'.format(audio_group), Y)
|
np.save('outputs/{}-train-Y.npy'.format(audio_group), Y)
|
||||||
save_samples_for('train',tr_audio_samples)
|
save_samples_for('train',tr_audio_samples)
|
||||||
save_samples_for('test',te_audio_samples)
|
save_samples_for('test',te_audio_samples)
|
||||||
# print('generating test siamese speech pairs ')
|
|
||||||
# X,Y = create_tagged_data(te_audio_samples,max_samples)
|
|
||||||
# print('pickling X/Y')
|
|
||||||
# np.save('outputs/{}-test-X.npy'.format(audio_group), X)
|
|
||||||
# np.save('outputs/{}-test-Y.npy'.format(audio_group), Y)
|
|
||||||
# # print('train/test splitting speech pairs')
|
|
||||||
# # tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
|
|
||||||
# # print('pickling train/test')
|
|
||||||
# # np.save('outputs/{}-tr_pairs.npy'.format(audio_group), tr_pairs)
|
|
||||||
# # np.save('outputs/{}-te_pairs.npy'.format(audio_group), te_pairs)
|
|
||||||
# # np.save('outputs/{}-tr_y.npy'.format(audio_group), tr_y)
|
|
||||||
# # np.save('outputs/{}-te_y.npy'.format(audio_group), te_y)
|
|
||||||
|
|
||||||
def speech_data(audio_group='audio'):
|
def speech_data(audio_group='audio'):
|
||||||
X = np.load('outputs/{}-X.npy'.format(audio_group)) / 255.0
|
X = np.load('outputs/{}-X.npy'.format(audio_group)) / 255.0
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue