generating spectrogram parallelly
parent
6ab84b4dc2
commit
b4ceeb4eed
|
|
@ -0,0 +1,25 @@
|
|||
import multiprocessing
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
def _apply_df(args):
|
||||
df, func, num, kwargs = args
|
||||
return num, df.apply(func, **kwargs)
|
||||
|
||||
def apply_by_multiprocessing(df,func,**kwargs):
|
||||
cores = multiprocessing.cpu_count()
|
||||
workers=kwargs.pop('workers') if 'workers' in kwargs else cores
|
||||
pool = multiprocessing.Pool(processes=workers)
|
||||
result = pool.map(_apply_df, [(d, func, i, kwargs) for i,d in enumerate(np.array_split(df, workers))])
|
||||
pool.close()
|
||||
result=sorted(result,key=lambda x:x[0])
|
||||
return pd.concat([i[1] for i in result])
|
||||
|
||||
def square(x):
|
||||
return x**x
|
||||
|
||||
if __name__ == '__main__':
|
||||
df = pd.DataFrame({'a':range(10), 'b':range(10)})
|
||||
apply_by_multiprocessing(df, square, axis=1, workers=4)
|
||||
177
speech_data.py
177
speech_data.py
|
|
@ -1,28 +1,46 @@
|
|||
import pandas as pd
|
||||
from pandas_parallel import apply_by_multiprocessing
|
||||
import dask as dd
|
||||
import dask.dataframe as ddf
|
||||
import numpy as np
|
||||
from spectro_gen import generate_aiff_spectrogram
|
||||
from sklearn.model_selection import train_test_split
|
||||
import itertools
|
||||
import random
|
||||
import csv
|
||||
import gc
|
||||
|
||||
|
||||
def get_siamese_pairs(groupF1, groupF2):
|
||||
group1 = [r for (i, r) in groupF1.iterrows()]
|
||||
group2 = [r for (i, r) in groupF2.iterrows()]
|
||||
f = [(g1, g2) for g2 in group2 for g1 in group1]
|
||||
t = [i for i in itertools.combinations(group1, 2)
|
||||
diff = [(g1, g2) for g2 in group2 for g1 in group1]
|
||||
same = [i for i in itertools.combinations(group1, 2)
|
||||
] + [i for i in itertools.combinations(group2, 2)]
|
||||
return (t, f)
|
||||
random.shuffle(same)
|
||||
random.shuffle(diff)
|
||||
# return (random.sample(same,10), random.sample(diff,10))
|
||||
return same[:10],diff[:10]
|
||||
|
||||
|
||||
def append_zeros(spgr, max_samples):
|
||||
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
|
||||
'median')
|
||||
|
||||
def padd_zeros(spgr, max_samples):
|
||||
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
|
||||
'constant')
|
||||
|
||||
def to_onehot(a,class_count=2):
|
||||
# >>> a = np.array([1, 0, 3])
|
||||
a_row_n = a.shape[0]
|
||||
b = np.zeros((a_row_n, class_count))
|
||||
b[np.arange(a_row_n), a] = 1
|
||||
return b
|
||||
|
||||
def create_pair(l, r, max_samples):
|
||||
l_sample = append_zeros(l, max_samples)
|
||||
r_sample = append_zeros(r, max_samples)
|
||||
l_sample = padd_zeros(l, max_samples)
|
||||
r_sample = padd_zeros(r, max_samples)
|
||||
return np.asarray([l_sample, r_sample])
|
||||
|
||||
|
||||
|
|
@ -36,73 +54,116 @@ def create_X(sp, max_samples):
|
|||
return create_pair(sp[0]['spectrogram'], sp[1]['spectrogram'], max_samples)
|
||||
|
||||
|
||||
def get_word_pairs_data(word, max_samples):
|
||||
audio_samples = pd.read_csv(
|
||||
'./outputs/audio.csv',
|
||||
names=['word', 'voice', 'rate', 'variant', 'file'])
|
||||
audio_samples = audio_samples.loc[audio_samples['word'] ==
|
||||
word].reset_index(drop=True)
|
||||
audio_samples.loc[:, 'spectrogram'] = audio_samples.loc[:, 'file'].apply(
|
||||
lambda x: 'outputs/audio/' + x).apply(generate_aiff_spectrogram)
|
||||
# max_samples = audio_samples['spectrogram'].apply(
|
||||
# lambda x: x.shape[0]).max()
|
||||
same_data, diff_data = [], []
|
||||
for (w, g) in audio_samples.groupby(audio_samples['word']):
|
||||
sample_norm = g.loc[audio_samples['variant'] == 'normal']
|
||||
sample_phon = g.loc[audio_samples['variant'] == 'phoneme']
|
||||
same, diff = get_siamese_pairs(sample_norm, sample_phon)
|
||||
same_data.extend([create_X(s, max_samples) for s in same[:10]])
|
||||
diff_data.extend([create_X(d, max_samples) for d in diff[:10]])
|
||||
Y = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
|
||||
X = np.asarray(same_data + diff_data)
|
||||
# tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
|
||||
return (X, Y)
|
||||
# def get_word_pairs_data(word, max_samples):
|
||||
# audio_samples = pd.read_csv(
|
||||
# './outputs/audio.csv',
|
||||
# names=['word', 'voice', 'rate', 'variant', 'file'])
|
||||
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
||||
# word].reset_index(drop=True)
|
||||
# audio_samples.loc[:, 'spectrogram'] = audio_samples.loc[:, 'file'].apply(
|
||||
# lambda x: 'outputs/audio/' + x).apply(generate_aiff_spectrogram)
|
||||
# max_samples = audio_samples['spectrogram'].apply(
|
||||
# lambda x: x.shape[0]).max()
|
||||
# same_data, diff_data = [], []
|
||||
# for (w, g) in audio_samples.groupby(audio_samples['word']):
|
||||
# sample_norm = g.loc[audio_samples['variant'] == 'normal']
|
||||
# sample_phon = g.loc[audio_samples['variant'] == 'phoneme']
|
||||
# same, diff = get_siamese_pairs(sample_norm, sample_phon)
|
||||
# same_data.extend([create_X(s, max_samples) for s in same])
|
||||
# diff_data.extend([create_X(d, max_samples) for d in diff])
|
||||
# Y = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
|
||||
# X = np.asarray(same_data + diff_data)
|
||||
# # tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
|
||||
# return (X, Y)
|
||||
|
||||
|
||||
def create_spectrogram_data(audio_group='audio'):
|
||||
audio_samples = pd.read_csv(
|
||||
'./outputs/' + audio_group + '.csv',
|
||||
names=['word', 'voice', 'rate', 'variant', 'file'])
|
||||
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
||||
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
||||
, quoting=csv.QUOTE_NONE)
|
||||
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
||||
# 'sunflowers'].reset_index(drop=True)
|
||||
audio_samples.loc[:, 'spectrogram'] = audio_samples.loc[:, 'file'].apply(
|
||||
lambda x: 'outputs/' + audio_group + '/' + x).apply(
|
||||
generate_aiff_spectrogram)
|
||||
audio_samples.to_pickle('outputs/spectrogram.pkl')
|
||||
file_names = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||
audio_samples['spectrogram'] = apply_by_multiprocessing(file_names,generate_aiff_spectrogram)#.apply(
|
||||
#generate_aiff_spectrogram)
|
||||
audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
||||
audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||
|
||||
|
||||
def create_speech_pairs_data(audio_group='audio'):
|
||||
audio_samples = pd.read_pickle('outputs/spectrogram.pkl')
|
||||
max_samples = audio_samples['spectrogram'].apply(
|
||||
lambda x: x.shape[0]).max()
|
||||
# sample_size = audio_samples['spectrogram'][0].shape[1]
|
||||
|
||||
print('generating siamese speech pairs')
|
||||
def create_tagged_data(audio_samples):
|
||||
same_data, diff_data = [], []
|
||||
for (w, g) in audio_samples.groupby(audio_samples['word']):
|
||||
# sample_norm = g.loc[audio_samples['variant'] == 'low']
|
||||
# sample_phon = g.loc[audio_samples['variant'] == 'medium']
|
||||
sample_norm = g.loc[audio_samples['variant'] == 'normal']
|
||||
sample_phon = g.loc[audio_samples['variant'] == 'phoneme']
|
||||
same, diff = get_siamese_pairs(sample_norm, sample_phon)
|
||||
same_data.extend([create_X(s, max_samples) for s in same[:10]])
|
||||
diff_data.extend([create_X(d, max_samples) for d in diff[:10]])
|
||||
same_data.extend([create_X(s) for s in same])
|
||||
diff_data.extend([create_X(d) for d in diff])
|
||||
print('creating all speech pairs')
|
||||
Y = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
|
||||
Y_f = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
|
||||
Y = to_onehot(Y_f.astype(np.int8))
|
||||
print('casting as array speech pairs')
|
||||
X = np.asarray(same_data + diff_data)
|
||||
print('pickling X/Y')
|
||||
np.save('outputs/X.npy', X)
|
||||
np.save('outputs/Y.npy', Y)
|
||||
del same_data
|
||||
del diff_data
|
||||
gc.collect()
|
||||
print('train/test splitting speech pairs')
|
||||
tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
|
||||
print('pickling train/test')
|
||||
np.save('outputs/tr_pairs.npy', tr_pairs)
|
||||
np.save('outputs/te_pairs.npy', te_pairs)
|
||||
np.save('outputs/tr_y.npy', tr_y)
|
||||
np.save('outputs/te_y.npy', te_y)
|
||||
# del same_data
|
||||
# del diff_data
|
||||
# gc.collect()
|
||||
return X,Y
|
||||
|
||||
# def create_padded_spectrogram(audio_group='audio'):
|
||||
# audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||
# daf_audio_samples = ddf.from_pandas(audio_samples,npartitions=4)
|
||||
# def spec_size(s):
|
||||
# return s['spectrogram'].shape[0]
|
||||
# max_samples = daf_audio_samples.apply(spec_size,axis=1, meta=('x', 'i8')).max().compute()
|
||||
# print('max sample count is ',max_samples)
|
||||
# def padd_zeros_fixed(sp):
|
||||
# x = sp['spectrogram']
|
||||
# bounds = [(0, max_samples - x.shape[0]), (0, 0)]
|
||||
# sp['spectrogram'] = np.lib.pad(x,bounds,'constant')
|
||||
# return sp
|
||||
# padded_audio_samples = daf_audio_samples.apply(padd_zeros_fixed,axis=1, meta=audio_samples).compute()#,max_samples=max_samples)
|
||||
# import pdb; pdb.set_trace()
|
||||
# padded_spectrogram = np.asarray(padded_audio_samples['spectrogram'].tolist())
|
||||
# np.save('outputs/{}-padded_spectrogram.npy'.format(audio_group),padded_spectrogram)
|
||||
|
||||
def create_speech_pairs_data(audio_group='audio'):
|
||||
audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||
# sample_size = audio_samples['spectrogram'][0].shape[1]
|
||||
tr_audio_samples,te_audio_samples = train_test_split(audio_samples, test_size=0.1)
|
||||
def save_samples_for(sample_name,samples):
|
||||
print('generating {} siamese speech pairs'.format(sample_name))
|
||||
X,Y = create_tagged_data(samples)
|
||||
print('shuffling array speech pairs')
|
||||
rng_state = np.random.get_state()
|
||||
np.random.shuffle(X)
|
||||
np.random.set_state(rng_state)
|
||||
np.random.shuffle(Y)
|
||||
# p = np.random.permutation(len(X))
|
||||
# X = X_i[p]
|
||||
# Y = Y_i[p]
|
||||
print('pickling X/Y')
|
||||
np.save('outputs/{}-train-X.npy'.format(audio_group), X)
|
||||
np.save('outputs/{}-train-Y.npy'.format(audio_group), Y)
|
||||
save_samples_for('train',tr_audio_samples)
|
||||
save_samples_for('test',te_audio_samples)
|
||||
# print('generating test siamese speech pairs ')
|
||||
# X,Y = create_tagged_data(te_audio_samples,max_samples)
|
||||
# print('pickling X/Y')
|
||||
# np.save('outputs/{}-test-X.npy'.format(audio_group), X)
|
||||
# np.save('outputs/{}-test-Y.npy'.format(audio_group), Y)
|
||||
# # print('train/test splitting speech pairs')
|
||||
# # tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
|
||||
# # print('pickling train/test')
|
||||
# # np.save('outputs/{}-tr_pairs.npy'.format(audio_group), tr_pairs)
|
||||
# # np.save('outputs/{}-te_pairs.npy'.format(audio_group), te_pairs)
|
||||
# # np.save('outputs/{}-tr_y.npy'.format(audio_group), tr_y)
|
||||
# # np.save('outputs/{}-te_y.npy'.format(audio_group), te_y)
|
||||
|
||||
def speech_data(audio_group='audio'):
|
||||
X = np.load('outputs/{}-X.npy'.format(audio_group)) / 255.0
|
||||
Y = np.load('outputs/{}-Y.npy'.format(audio_group))
|
||||
return (X,Y)
|
||||
|
||||
def speech_model_data():
|
||||
tr_pairs = np.load('outputs/tr_pairs.npy') / 255.0
|
||||
|
|
@ -117,5 +178,7 @@ def speech_model_data():
|
|||
if __name__ == '__main__':
|
||||
# sunflower_pairs_data()
|
||||
# create_spectrogram_data()
|
||||
create_speech_pairs_data()
|
||||
create_spectrogram_data('story_words')
|
||||
# create_padded_spectrogram()
|
||||
# create_speech_pairs_data()
|
||||
# print(speech_model_data())
|
||||
|
|
|
|||
|
|
@ -1,11 +1,10 @@
|
|||
from speech_siamese import siamese_model
|
||||
from record_mic_speech import record_spectrogram
|
||||
from importlib import reload
|
||||
import speech_data
|
||||
reload(speech_data)
|
||||
from speech_data import create_test_pair,get_word_pairs_data
|
||||
# import speech_data
|
||||
# reload(speech_data)
|
||||
from speech_data import create_test_pair,get_word_pairs_data,speech_data
|
||||
import numpy as np
|
||||
from keras.utils import to_categorical
|
||||
|
||||
model = siamese_model((15, 1654))
|
||||
model.load_weights('./models/siamese_speech_model-final.h5')
|
||||
|
|
@ -16,9 +15,16 @@ def predict_recording_with(m,sample_size=15):
|
|||
inp = create_test_pair(spec1,spec2,sample_size)
|
||||
return m.predict([inp[:, 0], inp[:, 1]])
|
||||
|
||||
while(True):
|
||||
print(predict_recording_with(model))
|
||||
# while(True):
|
||||
# print(predict_recording_with(model))
|
||||
|
||||
|
||||
def test_with(audio_group):
|
||||
X,Y = speech_data(audio_group)
|
||||
print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1))
|
||||
print(Y.astype(np.int8))
|
||||
|
||||
test_with('rand_edu')
|
||||
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
|
||||
# print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))
|
||||
# print(sunflower_result)
|
||||
|
|
|
|||
Loading…
Reference in New Issue