diff --git a/speech_data.py b/speech_data.py index afbd249..23d741f 100644 --- a/speech_data.py +++ b/speech_data.py @@ -6,11 +6,11 @@ import numpy as np from spectro_gen import generate_aiff_spectrogram from sklearn.model_selection import train_test_split import itertools +import os import random import csv import gc - def get_siamese_pairs(groupF1, groupF2): group1 = [r for (i, r) in groupF1.iterrows()] group2 = [r for (i, r) in groupF2.iterrows()] @@ -84,6 +84,8 @@ def create_spectrogram_data(audio_group='audio'): # audio_samples = audio_samples.loc[audio_samples['word'] == # 'sunflowers'].reset_index(drop=True) file_names = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x) + audio_samples['file_exists'] = apply_by_multiprocessing(file_names,os.path.exists) + audio_samples = audio_samples[audio_samples['file_exists'] == False] audio_samples['spectrogram'] = apply_by_multiprocessing(file_names,generate_aiff_spectrogram)#.apply( #generate_aiff_spectrogram) audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0]) @@ -105,28 +107,8 @@ def create_tagged_data(audio_samples): Y = to_onehot(Y_f.astype(np.int8)) print('casting as array speech pairs') X = np.asarray(same_data + diff_data) - # del same_data - # del diff_data - # gc.collect() return X,Y -# def create_padded_spectrogram(audio_group='audio'): -# audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group)) -# daf_audio_samples = ddf.from_pandas(audio_samples,npartitions=4) -# def spec_size(s): -# return s['spectrogram'].shape[0] -# max_samples = daf_audio_samples.apply(spec_size,axis=1, meta=('x', 'i8')).max().compute() -# print('max sample count is ',max_samples) -# def padd_zeros_fixed(sp): -# x = sp['spectrogram'] -# bounds = [(0, max_samples - x.shape[0]), (0, 0)] -# sp['spectrogram'] = np.lib.pad(x,bounds,'constant') -# return sp -# padded_audio_samples = daf_audio_samples.apply(padd_zeros_fixed,axis=1, meta=audio_samples).compute()#,max_samples=max_samples) -# import pdb; pdb.set_trace() -# padded_spectrogram = np.asarray(padded_audio_samples['spectrogram'].tolist()) -# np.save('outputs/{}-padded_spectrogram.npy'.format(audio_group),padded_spectrogram) - def create_speech_pairs_data(audio_group='audio'): audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group)) # sample_size = audio_samples['spectrogram'][0].shape[1] @@ -139,26 +121,11 @@ def create_speech_pairs_data(audio_group='audio'): np.random.shuffle(X) np.random.set_state(rng_state) np.random.shuffle(Y) - # p = np.random.permutation(len(X)) - # X = X_i[p] - # Y = Y_i[p] print('pickling X/Y') np.save('outputs/{}-train-X.npy'.format(audio_group), X) np.save('outputs/{}-train-Y.npy'.format(audio_group), Y) save_samples_for('train',tr_audio_samples) save_samples_for('test',te_audio_samples) - # print('generating test siamese speech pairs ') - # X,Y = create_tagged_data(te_audio_samples,max_samples) - # print('pickling X/Y') - # np.save('outputs/{}-test-X.npy'.format(audio_group), X) - # np.save('outputs/{}-test-Y.npy'.format(audio_group), Y) - # # print('train/test splitting speech pairs') - # # tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1) - # # print('pickling train/test') - # # np.save('outputs/{}-tr_pairs.npy'.format(audio_group), tr_pairs) - # # np.save('outputs/{}-te_pairs.npy'.format(audio_group), te_pairs) - # # np.save('outputs/{}-tr_y.npy'.format(audio_group), tr_y) - # # np.save('outputs/{}-te_y.npy'.format(audio_group), te_y) def speech_data(audio_group='audio'): X = np.load('outputs/{}-X.npy'.format(audio_group)) / 255.0