speech-scoring/speech_siamese.py

140 lines
4.6 KiB
Python
Raw Normal View History

'''Train a Siamese MLP on pairs of digits from the MNIST dataset.
It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the
output of the shared network and by optimizing the contrastive loss (see paper
for mode details).
[1] "Dimensionality Reduction by Learning an Invariant Mapping"
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
Gets to 97.2% test accuracy after 20 epochs.
2 seconds per epoch on a Titan X Maxwell GPU
'''
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
# import random
# from keras.datasets import mnist
from speech_data import speech_model_data
from keras.models import Model
from keras.layers import Input, Dense, Dropout, SimpleRNN, LSTM, Lambda
# Dense, Dropout, Input, Lambda, LSTM, SimpleRNN
from keras.optimizers import RMSprop, SGD
from keras.callbacks import TensorBoard
from keras import backend as K
def euclidean_distance(vects):
x, y = vects
return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True),
K.epsilon()))
def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
def contrastive_loss(y_true, y_pred):
'''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
'''
margin = 1
# print(y_true, y_pred)
return K.mean(y_true * K.square(y_pred) +
(1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
def create_base_rnn_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
inp = Input(shape=input_dim)
# d1 = Dense(1024, activation='sigmoid')(inp)
# # d2 = Dense(2, activation='sigmoid')(d1)
ls1 = LSTM(1024, return_sequences=True)(inp)
ls2 = LSTM(512, return_sequences=True)(ls1)
ls3 = LSTM(32)(ls2) # , return_sequences=True
# sr2 = SimpleRNN(128, return_sequences=True)(sr1)
# sr3 = SimpleRNN(32)(sr2)
# x = Dense(128, activation='relu')(sr1)
return Model(inp, ls3)
def create_base_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
input = Input(shape=input_dim)
x = Dense(128, activation='relu')(input)
x = Dropout(0.1)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.1)(x)
x = Dense(128, activation='relu')(x)
return Model(input, x)
def compute_accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
pred = y_pred.ravel() < 0.5
return np.mean(pred == y_true)
def accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
# the data, shuffled and split between train and test sets
tr_pairs, te_pairs, tr_y, te_y = speech_model_data()
# y_train.shape,y_test.shape
# x_train.shape,x_test.shape
# x_train = x_train.reshape(60000, 784)
# x_test = x_test.reshape(10000, 784)
# x_train = x_train.astype('float32')
# x_test = x_test.astype('float32')
# x_train /= 255
# x_test /= 255
input_dim = (tr_pairs.shape[2], tr_pairs.shape[3])
epochs = 20
# network definition
base_network = create_base_rnn_network(input_dim)
input_a = Input(shape=input_dim)
input_b = Input(shape=input_dim)
# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
processed_a = base_network(input_a)
processed_b = base_network(input_b)
distance = Lambda(euclidean_distance,
output_shape=eucl_dist_output_shape)(
[processed_a, processed_b]
)
model = Model([input_a, input_b], distance)
tb_cb = TensorBoard(log_dir='./siamese_logs', histogram_freq=1, batch_size=32,
write_graph=True, write_grads=True, write_images=True,
embeddings_freq=0, embeddings_layer_names=None,
embeddings_metadata=None)
# train
rms = RMSprop(lr=0.00001) # lr=0.001)
sgd = SGD(lr=0.001)
model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,
batch_size=128,
epochs=epochs,
validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),
callbacks=[tb_cb])
# compute final accuracy on training and test sets
y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
tr_acc = compute_accuracy(tr_y, y_pred)
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
te_acc = compute_accuracy(te_y, y_pred)
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))