113 lines
3.5 KiB
Python
113 lines
3.5 KiB
Python
|
|
'''Train a Siamese MLP on pairs of digits from the MNIST dataset.
|
||
|
|
|
||
|
|
It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the
|
||
|
|
output of the shared network and by optimizing the contrastive loss (see paper
|
||
|
|
for mode details).
|
||
|
|
|
||
|
|
[1] "Dimensionality Reduction by Learning an Invariant Mapping"
|
||
|
|
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
|
||
|
|
|
||
|
|
Gets to 97.2% test accuracy after 20 epochs.
|
||
|
|
2 seconds per epoch on a Titan X Maxwell GPU
|
||
|
|
'''
|
||
|
|
from __future__ import absolute_import
|
||
|
|
from __future__ import print_function
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
import random
|
||
|
|
# from keras.datasets import mnist
|
||
|
|
from speech_data import sunflower_pairs_data
|
||
|
|
from keras.models import Model
|
||
|
|
from keras.layers import Dense, Dropout, Input, Lambda, LSTM, SimpleRNN
|
||
|
|
from keras.optimizers import RMSprop
|
||
|
|
from keras import backend as K
|
||
|
|
|
||
|
|
def euclidean_distance(vects):
|
||
|
|
x, y = vects
|
||
|
|
return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
|
||
|
|
|
||
|
|
|
||
|
|
def eucl_dist_output_shape(shapes):
|
||
|
|
shape1, shape2 = shapes
|
||
|
|
return (shape1[0], 1)
|
||
|
|
|
||
|
|
|
||
|
|
def contrastive_loss(y_true, y_pred):
|
||
|
|
'''Contrastive loss from Hadsell-et-al.'06
|
||
|
|
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
|
||
|
|
'''
|
||
|
|
margin = 1
|
||
|
|
return K.mean(y_true * K.square(y_pred) +
|
||
|
|
(1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
|
||
|
|
|
||
|
|
|
||
|
|
def create_base_network(input_dim):
|
||
|
|
'''Base network to be shared (eq. to feature extraction).
|
||
|
|
'''
|
||
|
|
inp = Input(shape=input_dim)
|
||
|
|
sr1 = SimpleRNN(128)(inp)
|
||
|
|
# sr2 = LSTM(128)(sr1)
|
||
|
|
# sr2 = SimpleRNN(128)(sr)
|
||
|
|
x = Dense(128, activation='relu')(sr1)
|
||
|
|
return Model(inp, x)
|
||
|
|
|
||
|
|
|
||
|
|
def compute_accuracy(y_true, y_pred):
|
||
|
|
'''Compute classification accuracy with a fixed threshold on distances.
|
||
|
|
'''
|
||
|
|
pred = y_pred.ravel() < 0.5
|
||
|
|
return np.mean(pred == y_true)
|
||
|
|
|
||
|
|
|
||
|
|
def accuracy(y_true, y_pred):
|
||
|
|
'''Compute classification accuracy with a fixed threshold on distances.
|
||
|
|
'''
|
||
|
|
return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
|
||
|
|
|
||
|
|
|
||
|
|
# the data, shuffled and split between train and test sets
|
||
|
|
tr_pairs,te_pairs,tr_y,te_y = sunflower_pairs_data()
|
||
|
|
# y_train.shape,y_test.shape
|
||
|
|
# x_train.shape,x_test.shape
|
||
|
|
# x_train = x_train.reshape(60000, 784)
|
||
|
|
# x_test = x_test.reshape(10000, 784)
|
||
|
|
# x_train = x_train.astype('float32')
|
||
|
|
# x_test = x_test.astype('float32')
|
||
|
|
# x_train /= 255
|
||
|
|
# x_test /= 255
|
||
|
|
input_dim = tr_pairs.shape[2:]
|
||
|
|
epochs = 20
|
||
|
|
|
||
|
|
# network definition
|
||
|
|
base_network = create_base_network(input_dim)
|
||
|
|
input_a = Input(shape=input_dim)
|
||
|
|
input_b = Input(shape=input_dim)
|
||
|
|
|
||
|
|
# because we re-use the same instance `base_network`,
|
||
|
|
# the weights of the network
|
||
|
|
# will be shared across the two branches
|
||
|
|
processed_a = base_network(input_a)
|
||
|
|
processed_b = base_network(input_b)
|
||
|
|
|
||
|
|
distance = Lambda(euclidean_distance,
|
||
|
|
output_shape=eucl_dist_output_shape)([processed_a, processed_b])
|
||
|
|
|
||
|
|
model = Model([input_a, input_b], distance)
|
||
|
|
|
||
|
|
# train
|
||
|
|
rms = RMSprop()
|
||
|
|
model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
|
||
|
|
model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,
|
||
|
|
batch_size=128,
|
||
|
|
epochs=epochs,
|
||
|
|
validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y))
|
||
|
|
|
||
|
|
# compute final accuracy on training and test sets
|
||
|
|
y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
|
||
|
|
tr_acc = compute_accuracy(tr_y, y_pred)
|
||
|
|
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
|
||
|
|
te_acc = compute_accuracy(te_y, y_pred)
|
||
|
|
|
||
|
|
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
|
||
|
|
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
|