pickling intermediate data to save memory usage

master
Malar Kannan 2017-10-20 12:52:11 +05:30
parent b3755ad80e
commit e865f17a0d
3 changed files with 38 additions and 6 deletions

1
.gitignore vendored
View File

@ -140,3 +140,4 @@ Temporary Items
outputs/*
inputs/mnist
inputs/audio*
*.pkl

View File

@ -2,7 +2,7 @@ import pandas as pd
import numpy as np
from spectro_gen import generate_aiff_spectrogram
from sklearn.model_selection import train_test_split
import tensorflow as tf
import pickle,gc
def sunflower_data():
audio_samples = pd.read_csv('./outputs/audio.csv',names=['word','voice','rate','variant','file'])
@ -62,11 +62,12 @@ def create_spectrogram_data(audio_group='audio'):
audio_samples.loc[:,'spectrogram'] = audio_samples.loc[:,'file'].apply(lambda x:'outputs/'+audio_group+'/'+x).apply(generate_aiff_spectrogram)
audio_samples.to_pickle('outputs/spectrogram.pkl')
def speech_pairs_data(audio_group='audio'):
def create_speech_pairs_data(audio_group='audio'):
audio_samples = pd.read_pickle('outputs/spectrogram.pkl')
y_data = audio_samples['variant'].apply(lambda x:x=='normal').values
max_samples = audio_samples['spectrogram'].apply(lambda x:x.shape[0]).max()
sample_size = audio_samples['spectrogram'][0].shape[1]
pickle.dump((max_samples,sample_size),open('./spectrogram_vars.pkl','wb'))
audio_samples_pos = audio_samples[audio_samples['variant'] == 'normal'].reset_index(drop=True)
audio_samples_neg = audio_samples[audio_samples['variant'] == 'phoneme'].reset_index(drop=True)
def append_zeros(spgr):
@ -74,17 +75,47 @@ def speech_pairs_data(audio_group='audio'):
def create_data(sf):
sample_count = sf['spectrogram'].shape[0]
pad_sun = sf['spectrogram'].apply(append_zeros).values
print('appended zeros')
x_data = np.vstack(pad_sun).reshape((sample_count,max_samples,sample_size))
print('reshaped')
return x_data
print('creating speech pair data')
x_data_pos = create_data(audio_samples_pos)
x_data_neg = create_data(audio_samples_neg)
np.save('outputs/x_data_pos.npy',x_data_pos)
np.save('outputs/x_data_neg.npy',x_data_neg)
print('pickled speech pairs')
def create_speech_model_data():
(max_samples,sample_size) = pickle.load(open('./spectrogram_vars.pkl','rb'))
x_data_pos = np.load('outputs/x_data_pos.npy')
x_data_neg = np.load('outputs/x_data_neg.npy')
x_pos_train, x_pos_test, x_neg_train, x_neg_test =train_test_split(x_data_pos,x_data_neg,test_size=0.33)
del x_data_pos
del x_data_neg
gc.collect()
print('split train and test')
tr_y = np.array(x_pos_train.shape[0]*[[1,0]])
te_y = np.array(x_pos_test.shape[0]*[[1,0]])
tr_pairs = np.array([x_pos_train,x_neg_train]).reshape(x_pos_train.shape[0],2,max_samples,sample_size)
te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size)
print('reshaped to input dim')
np.save('outputs/tr_pairs.npy',tr_pairs)
np.save('outputs/te_pairs.npy',te_pairs)
np.save('outputs/tr_y.npy',tr_y)
np.save('outputs/te_y.npy',te_y)
print('pickled speech model data')
# return tr_pairs,te_pairs,tr_y,te_y
def speech_model_data():
tr_pairs = np.load('outputs/tr_pairs.npy')
te_pairs = np.load('outputs/te_pairs.npy')
tr_y = np.load('outputs/tr_y.npy')
te_y = np.load('outputs/te_y.npy')
return tr_pairs,te_pairs,tr_y,te_y
if __name__ == '__main__':
create_spectrogram_data()
print(speech_pairs_data())
#create_spectrogram_data()
# create_speech_pairs_data()
# create_speech_model_data()
print(speech_model_data())

View File

@ -16,7 +16,7 @@ import numpy as np
import random
# from keras.datasets import mnist
from speech_data import sunflower_pairs_data
from speech_data import speech_model_data
from keras.models import Model
from keras.layers import Dense, Dropout, Input, Lambda, LSTM, SimpleRNN
from keras.optimizers import RMSprop
@ -66,7 +66,7 @@ def accuracy(y_true, y_pred):
# the data, shuffled and split between train and test sets
tr_pairs,te_pairs,tr_y,te_y = sunflower_pairs_data()
tr_pairs,te_pairs,tr_y,te_y = speech_model_data()
# y_train.shape,y_test.shape
# x_train.shape,x_test.shape
# x_train = x_train.reshape(60000, 784)