mirror of https://github.com/malarinv/tacotron2
|
|
||
|---|---|---|
| filelists | ||
| text | ||
| Dockerfile | ||
| LICENSE | ||
| README.md | ||
| audio_processing.py | ||
| data_utils.py | ||
| distributed.py | ||
| fp16_optimizer.py | ||
| hparams.py | ||
| inference.ipynb | ||
| layers.py | ||
| logger.py | ||
| loss_function.py | ||
| loss_scaler.py | ||
| model.py | ||
| multiproc.py | ||
| plotting_utils.py | ||
| requirements.txt | ||
| stft.py | ||
| tensorboard.png | ||
| train.py | ||
| utils.py | ||
README.md
Tacotron 2 (without wavenet)
Tacotron 2 PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions.
This implementation includes distributed and fp16 support and uses the LJSpeech dataset.
Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's Apex Library.
Pre-requisites
- NVIDIA GPU + CUDA cuDNN
Setup
- Download and extract the LJ Speech dataset
- Clone this repo:
git clone https://github.com/NVIDIA/tacotron2.git - CD into this repo:
cd tacotron2 - Update .wav paths:
sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt - Install pytorch 0.4
- Install python requirements or build docker image
- Install python requirements:
pip install requirements.txt - OR
- Build docker image:
docker build --tag tacotron2 .
- Install python requirements:
Training
python train.py --output_directory=outdir --log_directory=logdir- (OPTIONAL)
tensorboard --logdir=outdir/logdir
Multi-GPU (distributed) and FP16 Training
python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True
Inference
jupyter notebook --ip=127.0.0.1 --port=31337- load inference.ipynb
Related repos
nv-wavenet: Faster than real-time wavenet inference
Acknowledgements
This implementation uses code from the following repos: Keith Ito, Prem Seetharaman as described in our code.
We are inspired by Ryuchi Yamamoto's Tacotron PyTorch implementation.
We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan Wang and Zongheng Yang.
