mirror of https://github.com/malarinv/tacotron2
Merge pull request #2 from NVIDIA/single-gpu-and-0.4
train.py single gpu and 0.4 updatemask-utils-0.4
commit
d750fcf395
|
|
@ -31,7 +31,7 @@ Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's
|
|||
2. (OPTIONAL) `tensorboard --logdir=outdir/logdir`
|
||||
|
||||
## Multi-GPU (distributed) and FP16 Training
|
||||
1. `python -m multiproc train.py --output_directory=/outdir --log_directory=/logdir --hparams=distributed_run=True --fp16_run=True`
|
||||
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
|
||||
|
||||
## Inference
|
||||
1. `jupyter notebook --ip=127.0.0.1 --port=31337`
|
||||
|
|
|
|||
25
train.py
25
train.py
|
|
@ -78,15 +78,19 @@ def prepare_directories_and_logger(output_directory, log_directory, rank):
|
|||
def load_model(hparams):
|
||||
model = Tacotron2(hparams).cuda()
|
||||
model = batchnorm_to_float(model.half()) if hparams.fp16_run else model
|
||||
model = DistributedDataParallel(model) \
|
||||
if hparams.distributed_run else DataParallel(model)
|
||||
|
||||
if hparams.distributed_run:
|
||||
model = DistributedDataParallel(model)
|
||||
elif torch.cuda.device_count() > 1:
|
||||
model = DataParallel(model)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def warm_start_model(checkpoint_path, model):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
|
||||
checkpoint_dict = torch.load(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
model.load_state_dict(checkpoint_dict['state_dict'])
|
||||
return model
|
||||
|
||||
|
|
@ -124,8 +128,13 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus,
|
|||
pin_memory=False, collate_fn=collate_fn)
|
||||
|
||||
val_loss = 0.0
|
||||
if distributed_run or torch.cuda.device_count() > 1:
|
||||
batch_parser = model.module.parse_batch
|
||||
else:
|
||||
batch_parser = model.parse_batch
|
||||
|
||||
for i, batch in enumerate(val_loader):
|
||||
x, y = model.module.parse_batch(batch)
|
||||
x, y = batch_parser(batch)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, y)
|
||||
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
||||
|
|
@ -184,6 +193,10 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
epoch_offset = max(0, int(iteration / len(train_loader)))
|
||||
|
||||
model.train()
|
||||
if hparams.distributed_run or torch.cuda.device_count() > 1:
|
||||
batch_parser = model.module.parse_batch
|
||||
else:
|
||||
batch_parser = model.parse_batch
|
||||
# ================ MAIN TRAINNIG LOOP! ===================
|
||||
for epoch in range(epoch_offset, hparams.epochs):
|
||||
print("Epoch: {}".format(epoch))
|
||||
|
|
@ -193,7 +206,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
param_group['lr'] = learning_rate
|
||||
|
||||
model.zero_grad()
|
||||
x, y = model.module.parse_batch(batch)
|
||||
x, y = batch_parser(batch)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, y)
|
||||
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
||||
|
|
@ -205,7 +218,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
else:
|
||||
loss.backward()
|
||||
grad_norm = torch.nn.utils.clip_grad_norm(
|
||||
model.module.parameters(), hparams.grad_clip_thresh)
|
||||
model.parameters(), hparams.grad_clip_thresh)
|
||||
|
||||
optimizer.step()
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue