mirror of https://github.com/malarinv/tacotron2
train.py: updating
parent
1ea6ed5861
commit
ce29e13959
56
train.py
56
train.py
|
|
@ -5,9 +5,9 @@ import math
|
|||
from numpy import finfo
|
||||
|
||||
import torch
|
||||
from distributed import DistributedDataParallel
|
||||
from distributed import apply_gradient_allreduce
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.nn import DataParallel
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from fp16_optimizer import FP16_Optimizer
|
||||
|
|
@ -30,19 +30,20 @@ def batchnorm_to_float(module):
|
|||
|
||||
def reduce_tensor(tensor, num_gpus):
|
||||
rt = tensor.clone()
|
||||
torch.distributed.all_reduce(rt, op=torch.distributed.reduce_op.SUM)
|
||||
dist.all_reduce(rt, op=dist.reduce_op.SUM)
|
||||
rt /= num_gpus
|
||||
return rt
|
||||
|
||||
|
||||
def init_distributed(hparams, n_gpus, rank, group_name):
|
||||
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
|
||||
print("Initializing distributed")
|
||||
print("Initializing Distributed")
|
||||
|
||||
# Set cuda device so everything is done on the right GPU.
|
||||
torch.cuda.set_device(rank % torch.cuda.device_count())
|
||||
|
||||
# Initialize distributed communication
|
||||
torch.distributed.init_process_group(
|
||||
dist.init_process_group(
|
||||
backend=hparams.dist_backend, init_method=hparams.dist_url,
|
||||
world_size=n_gpus, rank=rank, group_name=group_name)
|
||||
|
||||
|
|
@ -131,22 +132,20 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus,
|
|||
pin_memory=False, collate_fn=collate_fn)
|
||||
|
||||
val_loss = 0.0
|
||||
if distributed_run or torch.cuda.device_count() > 1:
|
||||
batch_parser = model.module.parse_batch
|
||||
else:
|
||||
batch_parser = model.parse_batch
|
||||
|
||||
for i, batch in enumerate(val_loader):
|
||||
x, y = batch_parser(batch)
|
||||
x, y = model.parse_batch(batch)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, y)
|
||||
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
||||
if distributed_run else loss.data[0]
|
||||
if distributed_run:
|
||||
reduced_val_loss = reduce_tensor(loss.data, num_gpus).item()
|
||||
else:
|
||||
reduced_val_loss = loss.item()
|
||||
val_loss += reduced_val_loss
|
||||
val_loss = val_loss / (i + 1)
|
||||
|
||||
model.train()
|
||||
return val_loss
|
||||
print("Validation loss {}: {:9f} ".format(iteration, reduced_val_loss))
|
||||
logger.log_validation(reduced_val_loss, model, y, y_pred, iteration)
|
||||
|
||||
|
||||
def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
||||
|
|
@ -176,6 +175,9 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
optimizer = FP16_Optimizer(
|
||||
optimizer, dynamic_loss_scale=hparams.dynamic_loss_scaling)
|
||||
|
||||
if hparams.distributed_run:
|
||||
model = apply_gradient_allreduce(model)
|
||||
|
||||
criterion = Tacotron2Loss()
|
||||
|
||||
logger = prepare_directories_and_logger(
|
||||
|
|
@ -194,15 +196,10 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
checkpoint_path, model, optimizer)
|
||||
if hparams.use_saved_learning_rate:
|
||||
learning_rate = _learning_rate
|
||||
|
||||
iteration += 1 # next iteration is iteration + 1
|
||||
epoch_offset = max(0, int(iteration / len(train_loader)))
|
||||
|
||||
model.train()
|
||||
if hparams.distributed_run or torch.cuda.device_count() > 1:
|
||||
batch_parser = model.module.parse_batch
|
||||
else:
|
||||
batch_parser = model.parse_batch
|
||||
# ================ MAIN TRAINNIG LOOP! ===================
|
||||
for epoch in range(epoch_offset, hparams.epochs):
|
||||
print("Epoch: {}".format(epoch))
|
||||
|
|
@ -212,18 +209,21 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
param_group['lr'] = learning_rate
|
||||
|
||||
model.zero_grad()
|
||||
x, y = batch_parser(batch)
|
||||
x, y = model.parse_batch(batch)
|
||||
y_pred = model(x)
|
||||
|
||||
loss = criterion(y_pred, y)
|
||||
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
||||
if hparams.distributed_run else loss.data[0]
|
||||
if hparams.distributed_run:
|
||||
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
|
||||
else:
|
||||
reduced_loss = loss.item()
|
||||
|
||||
if hparams.fp16_run:
|
||||
optimizer.backward(loss)
|
||||
grad_norm = optimizer.clip_fp32_grads(hparams.grad_clip_thresh)
|
||||
else:
|
||||
loss.backward()
|
||||
grad_norm = torch.nn.utils.clip_grad_norm(
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(), hparams.grad_clip_thresh)
|
||||
|
||||
optimizer.step()
|
||||
|
|
@ -234,20 +234,14 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
duration = time.perf_counter() - start
|
||||
print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
|
||||
iteration, reduced_loss, grad_norm, duration))
|
||||
|
||||
logger.log_training(
|
||||
reduced_loss, grad_norm, learning_rate, duration, iteration)
|
||||
|
||||
if not overflow and (iteration % hparams.iters_per_checkpoint == 0):
|
||||
reduced_val_loss = validate(
|
||||
model, criterion, valset, iteration, hparams.batch_size,
|
||||
n_gpus, collate_fn, logger, hparams.distributed_run, rank)
|
||||
validate(model, criterion, valset, iteration, hparams.batch_size,
|
||||
n_gpus, collate_fn, logger, hparams.distributed_run, rank)
|
||||
|
||||
if rank == 0:
|
||||
print("Validation loss {}: {:9f} ".format(
|
||||
iteration, reduced_val_loss))
|
||||
logger.log_validation(
|
||||
reduced_val_loss, model, y, y_pred, iteration)
|
||||
checkpoint_path = os.path.join(
|
||||
output_directory, "checkpoint_{}".format(iteration))
|
||||
save_checkpoint(model, optimizer, learning_rate, iteration,
|
||||
|
|
|
|||
Loading…
Reference in New Issue