mirror of https://github.com/malarinv/tacotron2
README.md: clarifying terminology
parent
e3d2d0a5ef
commit
c76ac3b211
|
|
@ -3,10 +3,10 @@
|
|||
PyTorch implementation of [Natural TTS Synthesis By Conditioning
|
||||
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
|
||||
|
||||
This implementation includes **distributed** and **mixed precision** support
|
||||
This implementation includes **distributed** and **automatic mixed precision** support
|
||||
and uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/).
|
||||
|
||||
Distributed and Mixed Precision support relies on NVIDIA's [Apex] and [AMP].
|
||||
Distributed and Automatic Mixed Precision support relies on NVIDIA's [Apex] and [AMP].
|
||||
|
||||
Visit our [website] for audio samples using our published [Tacotron 2] and
|
||||
[WaveGlow] models.
|
||||
|
|
@ -40,7 +40,7 @@ By default, the dataset dependent text embedding layers are [ignored]
|
|||
1. Download our published [Tacotron 2] model
|
||||
2. `python train.py --output_directory=outdir --log_directory=logdir -c tacotron2_statedict.pt --warm_start`
|
||||
|
||||
## Multi-GPU (distributed) and Mixed Precision Training
|
||||
## Multi-GPU (distributed) and Automatic Mixed Precision Training
|
||||
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
|
||||
|
||||
## Inference demo
|
||||
|
|
@ -78,4 +78,4 @@ Wang and Zongheng Yang.
|
|||
[website]: https://nv-adlr.github.io/WaveGlow
|
||||
[ignored]: https://github.com/NVIDIA/tacotron2/blob/master/hparams.py#L22
|
||||
[Apex]: https://github.com/nvidia/apex
|
||||
[AMP]: https://github.com/NVIDIA/apex/tree/master/apex/amp
|
||||
[AMP]: https://github.com/NVIDIA/apex/tree/master/apex/amp
|
||||
|
|
|
|||
Loading…
Reference in New Issue