mirror of https://github.com/malarinv/tacotron2
1. using SentencePiece, Pretrained BPEmb
2. Using 40 Mel channels with 4000Hz upperboundexperiments
parent
f449105b79
commit
6d3788d858
|
|
@ -6,7 +6,7 @@ import torch.utils.data
|
||||||
import layers
|
import layers
|
||||||
from utils import load_wav_to_torch, load_filepaths_and_text
|
from utils import load_wav_to_torch, load_filepaths_and_text
|
||||||
# from text import text_to_sequence
|
# from text import text_to_sequence
|
||||||
from spm_codec import text_to_sequence
|
from text_codec import text_to_sequence
|
||||||
|
|
||||||
class TextMelLoader(torch.utils.data.Dataset):
|
class TextMelLoader(torch.utils.data.Dataset):
|
||||||
"""
|
"""
|
||||||
|
|
|
||||||
|
|
@ -39,12 +39,12 @@ def create_hparams(hparams_string=None, verbose=False):
|
||||||
win_length=1024,
|
win_length=1024,
|
||||||
n_mel_channels=40,
|
n_mel_channels=40,
|
||||||
mel_fmin=0.0,
|
mel_fmin=0.0,
|
||||||
mel_fmax=8000.0,
|
mel_fmax=4000.0,
|
||||||
|
|
||||||
################################
|
################################
|
||||||
# Model Parameters #
|
# Model Parameters #
|
||||||
################################
|
################################
|
||||||
n_symbols=len(symbols),
|
n_symbols=1000,#len(symbols),
|
||||||
symbols_embedding_dim=512,
|
symbols_embedding_dim=512,
|
||||||
|
|
||||||
# Encoder parameters
|
# Encoder parameters
|
||||||
|
|
|
||||||
|
|
@ -1,10 +1,11 @@
|
||||||
from utils import load_filepaths_and_text
|
from utils import load_filepaths_and_text
|
||||||
|
|
||||||
# from text import text_to_sequence, sequence_to_text
|
from text import text_to_sequence, sequence_to_text
|
||||||
|
|
||||||
from hparams import create_hparams
|
from hparams import create_hparams
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
from text import symbols
|
from text import symbols
|
||||||
|
from bpemb import BPEmb
|
||||||
|
|
||||||
|
|
||||||
SPM_CORPUS_FILE = "filelists/text_corpus.txt"
|
SPM_CORPUS_FILE = "filelists/text_corpus.txt"
|
||||||
|
|
@ -44,7 +45,18 @@ def _spm_text_codecs():
|
||||||
return ttseq, seqtt
|
return ttseq, seqtt
|
||||||
|
|
||||||
|
|
||||||
text_to_sequence, sequence_to_text = _spm_text_codecs()
|
def _bpemb_text_codecs():
|
||||||
|
bpemb_en = BPEmb(lang="en", dim=50, vs=148)
|
||||||
|
def ttseq(text, cleaners):
|
||||||
|
return bpemb_en.encode_ids(text)
|
||||||
|
|
||||||
|
def seqtt(sequence):
|
||||||
|
return bpemb_en.decode_ids(sequence)
|
||||||
|
|
||||||
|
return ttseq, seqtt
|
||||||
|
|
||||||
|
# text_to_sequence, sequence_to_text = _spm_text_codecs()
|
||||||
|
text_to_sequence, sequence_to_text = _bpemb_text_codecs()
|
||||||
|
|
||||||
|
|
||||||
def _interactive_test():
|
def _interactive_test():
|
||||||
|
|
@ -56,8 +68,8 @@ def _interactive_test():
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
_create_sentencepiece_corpus()
|
# _create_sentencepiece_corpus()
|
||||||
_create_sentencepiece_vocab()
|
# _create_sentencepiece_vocab()
|
||||||
_interactive_test()
|
_interactive_test()
|
||||||
|
|
||||||
|
|
||||||
Loading…
Reference in New Issue