1. using SentencePiece, Pretrained BPEmb

2. Using 40 Mel channels with 4000Hz upperbound
experiments
Malar Kannan 2019-09-24 10:29:34 +05:30
parent f449105b79
commit 6d3788d858
3 changed files with 19 additions and 7 deletions

View File

@ -6,7 +6,7 @@ import torch.utils.data
import layers
from utils import load_wav_to_torch, load_filepaths_and_text
# from text import text_to_sequence
from spm_codec import text_to_sequence
from text_codec import text_to_sequence
class TextMelLoader(torch.utils.data.Dataset):
"""

View File

@ -39,12 +39,12 @@ def create_hparams(hparams_string=None, verbose=False):
win_length=1024,
n_mel_channels=40,
mel_fmin=0.0,
mel_fmax=8000.0,
mel_fmax=4000.0,
################################
# Model Parameters #
################################
n_symbols=len(symbols),
n_symbols=1000,#len(symbols),
symbols_embedding_dim=512,
# Encoder parameters

View File

@ -1,10 +1,11 @@
from utils import load_filepaths_and_text
# from text import text_to_sequence, sequence_to_text
from text import text_to_sequence, sequence_to_text
from hparams import create_hparams
import sentencepiece as spm
from text import symbols
from bpemb import BPEmb
SPM_CORPUS_FILE = "filelists/text_corpus.txt"
@ -44,7 +45,18 @@ def _spm_text_codecs():
return ttseq, seqtt
text_to_sequence, sequence_to_text = _spm_text_codecs()
def _bpemb_text_codecs():
bpemb_en = BPEmb(lang="en", dim=50, vs=148)
def ttseq(text, cleaners):
return bpemb_en.encode_ids(text)
def seqtt(sequence):
return bpemb_en.decode_ids(sequence)
return ttseq, seqtt
# text_to_sequence, sequence_to_text = _spm_text_codecs()
text_to_sequence, sequence_to_text = _bpemb_text_codecs()
def _interactive_test():
@ -56,8 +68,8 @@ def _interactive_test():
def main():
_create_sentencepiece_corpus()
_create_sentencepiece_vocab()
# _create_sentencepiece_corpus()
# _create_sentencepiece_vocab()
_interactive_test()