mirror of https://github.com/malarinv/tacotron2
layers.py: rewrite
parent
249afd8043
commit
1ec0e5e8cd
|
|
@ -10,7 +10,7 @@ class LinearNorm(torch.nn.Module):
|
|||
super(LinearNorm, self).__init__()
|
||||
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
||||
|
||||
torch.nn.init.xavier_uniform(
|
||||
torch.nn.init.xavier_uniform_(
|
||||
self.linear_layer.weight,
|
||||
gain=torch.nn.init.calculate_gain(w_init_gain))
|
||||
|
||||
|
|
@ -31,7 +31,7 @@ class ConvNorm(torch.nn.Module):
|
|||
padding=padding, dilation=dilation,
|
||||
bias=bias)
|
||||
|
||||
torch.nn.init.xavier_uniform(
|
||||
torch.nn.init.xavier_uniform_(
|
||||
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
|
||||
|
||||
def forward(self, signal):
|
||||
|
|
@ -42,7 +42,7 @@ class ConvNorm(torch.nn.Module):
|
|||
class TacotronSTFT(torch.nn.Module):
|
||||
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
||||
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|
||||
mel_fmax=None):
|
||||
mel_fmax=8000.0):
|
||||
super(TacotronSTFT, self).__init__()
|
||||
self.n_mel_channels = n_mel_channels
|
||||
self.sampling_rate = sampling_rate
|
||||
|
|
|
|||
Loading…
Reference in New Issue