mirror of https://github.com/malarinv/tacotron2
train.py: using amp for mixed precision training
parent
bb20035586
commit
0274619e45
38
train.py
38
train.py
|
|
@ -10,8 +10,6 @@ import torch.distributed as dist
|
|||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from fp16_optimizer import FP16_Optimizer
|
||||
|
||||
from model import Tacotron2
|
||||
from data_utils import TextMelLoader, TextMelCollate
|
||||
from loss_function import Tacotron2Loss
|
||||
|
|
@ -19,15 +17,6 @@ from logger import Tacotron2Logger
|
|||
from hparams import create_hparams
|
||||
|
||||
|
||||
def batchnorm_to_float(module):
|
||||
"""Converts batch norm modules to FP32"""
|
||||
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
||||
module.float()
|
||||
for child in module.children():
|
||||
batchnorm_to_float(child)
|
||||
return module
|
||||
|
||||
|
||||
def reduce_tensor(tensor, n_gpus):
|
||||
rt = tensor.clone()
|
||||
dist.all_reduce(rt, op=dist.reduce_op.SUM)
|
||||
|
|
@ -80,8 +69,7 @@ def prepare_directories_and_logger(output_directory, log_directory, rank):
|
|||
def load_model(hparams):
|
||||
model = Tacotron2(hparams).cuda()
|
||||
if hparams.fp16_run:
|
||||
model = batchnorm_to_float(model.half())
|
||||
model.decoder.attention_layer.score_mask_value = float(finfo('float16').min)
|
||||
model.decoder.attention_layer.score_mask_value = finfo('float16').min
|
||||
|
||||
if hparams.distributed_run:
|
||||
model = apply_gradient_allreduce(model)
|
||||
|
|
@ -177,9 +165,11 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
learning_rate = hparams.learning_rate
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
|
||||
weight_decay=hparams.weight_decay)
|
||||
|
||||
if hparams.fp16_run:
|
||||
optimizer = FP16_Optimizer(
|
||||
optimizer, dynamic_loss_scale=hparams.dynamic_loss_scaling)
|
||||
from apex import amp
|
||||
model, optimizer = amp.initialize(
|
||||
model, optimizer, opt_level='O2')
|
||||
|
||||
if hparams.distributed_run:
|
||||
model = apply_gradient_allreduce(model)
|
||||
|
|
@ -207,6 +197,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
epoch_offset = max(0, int(iteration / len(train_loader)))
|
||||
|
||||
model.train()
|
||||
is_overflow = False
|
||||
# ================ MAIN TRAINNIG LOOP! ===================
|
||||
for epoch in range(epoch_offset, hparams.epochs):
|
||||
print("Epoch: {}".format(epoch))
|
||||
|
|
@ -224,27 +215,30 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
reduced_loss = reduce_tensor(loss.data, n_gpus).item()
|
||||
else:
|
||||
reduced_loss = loss.item()
|
||||
|
||||
if hparams.fp16_run:
|
||||
optimizer.backward(loss)
|
||||
grad_norm = optimizer.clip_fp32_grads(hparams.grad_clip_thresh)
|
||||
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
if hparams.fp16_run:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
amp.master_params(optimizer), hparams.grad_clip_thresh)
|
||||
is_overflow = math.isnan(grad_norm)
|
||||
else:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(), hparams.grad_clip_thresh)
|
||||
|
||||
optimizer.step()
|
||||
|
||||
overflow = optimizer.overflow if hparams.fp16_run else False
|
||||
|
||||
if not overflow and not math.isnan(reduced_loss) and rank == 0:
|
||||
if not is_overflow and rank == 0:
|
||||
duration = time.perf_counter() - start
|
||||
print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
|
||||
iteration, reduced_loss, grad_norm, duration))
|
||||
logger.log_training(
|
||||
reduced_loss, grad_norm, learning_rate, duration, iteration)
|
||||
|
||||
if not overflow and (iteration % hparams.iters_per_checkpoint == 0):
|
||||
if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0):
|
||||
validate(model, criterion, valset, iteration,
|
||||
hparams.batch_size, n_gpus, collate_fn, logger,
|
||||
hparams.distributed_run, rank)
|
||||
|
|
|
|||
Loading…
Reference in New Issue