2018-05-03 22:10:51 +00:00
|
|
|
# Tacotron 2 (without wavenet)
|
|
|
|
|
|
2018-11-27 16:03:34 +00:00
|
|
|
PyTorch implementation of [Natural TTS Synthesis By Conditioning
|
2018-05-03 22:10:51 +00:00
|
|
|
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
|
|
|
|
|
|
2019-04-03 21:54:45 +00:00
|
|
|
This implementation includes **distributed** and **mixed precision** support
|
2018-05-03 22:10:51 +00:00
|
|
|
and uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/).
|
|
|
|
|
|
2019-04-03 21:54:45 +00:00
|
|
|
Distributed and Mixed Precision support relies on NVIDIA's [Apex] and [AMP].
|
2018-05-03 22:10:51 +00:00
|
|
|
|
2018-11-27 19:59:05 +00:00
|
|
|
Visit our [website] for audio samples using our published [Tacotron 2] and
|
|
|
|
|
[WaveGlow] models.
|
|
|
|
|
|
2018-05-03 22:10:51 +00:00
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Pre-requisites
|
|
|
|
|
1. NVIDIA GPU + CUDA cuDNN
|
|
|
|
|
|
|
|
|
|
## Setup
|
|
|
|
|
1. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/)
|
|
|
|
|
2. Clone this repo: `git clone https://github.com/NVIDIA/tacotron2.git`
|
|
|
|
|
3. CD into this repo: `cd tacotron2`
|
2018-11-27 19:55:40 +00:00
|
|
|
4. Initialize submodule: `git submodule init; git submodule update`
|
|
|
|
|
5. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt`
|
2018-05-15 15:50:21 +00:00
|
|
|
- Alternatively, set `load_mel_from_disk=True` in `hparams.py` and update mel-spectrogram paths
|
2018-11-27 19:55:40 +00:00
|
|
|
6. Install [PyTorch 1.0]
|
2019-04-03 21:51:36 +00:00
|
|
|
7. Install [Apex]
|
|
|
|
|
8. Install python requirements or build docker image
|
2018-05-05 06:06:58 +00:00
|
|
|
- Install python requirements: `pip install -r requirements.txt`
|
2018-05-03 22:10:51 +00:00
|
|
|
|
|
|
|
|
## Training
|
|
|
|
|
1. `python train.py --output_directory=outdir --log_directory=logdir`
|
|
|
|
|
2. (OPTIONAL) `tensorboard --logdir=outdir/logdir`
|
|
|
|
|
|
2019-03-16 00:38:40 +00:00
|
|
|
## Training using a pre-trained model
|
|
|
|
|
Training using a pre-trained model can lead to faster convergence
|
|
|
|
|
By default, the dataset dependent text embedding layers are [ignored]
|
|
|
|
|
|
|
|
|
|
1. Download our published [Tacotron 2] model
|
|
|
|
|
2. `python train.py --output_directory=outdir --log_directory=logdir -c tacotron2_statedict.pt --warm_start`
|
|
|
|
|
|
2019-04-03 21:56:06 +00:00
|
|
|
## Multi-GPU (distributed) and Mixed Precision Training
|
2018-05-04 16:09:24 +00:00
|
|
|
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
|
2018-05-03 22:10:51 +00:00
|
|
|
|
2018-11-27 16:03:34 +00:00
|
|
|
## Inference demo
|
|
|
|
|
1. Download our published [Tacotron 2] model
|
|
|
|
|
2. Download our published [WaveGlow] model
|
|
|
|
|
3. `jupyter notebook --ip=127.0.0.1 --port=31337`
|
|
|
|
|
4. Load inference.ipynb
|
2018-05-03 22:10:51 +00:00
|
|
|
|
2018-11-27 16:03:34 +00:00
|
|
|
N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2
|
|
|
|
|
and the Mel decoder were trained on the same mel-spectrogram representation.
|
2018-06-14 18:25:42 +00:00
|
|
|
|
|
|
|
|
|
2018-05-03 22:10:51 +00:00
|
|
|
## Related repos
|
2018-11-27 16:03:34 +00:00
|
|
|
[WaveGlow](https://github.com/NVIDIA/WaveGlow) Faster than real time Flow-based
|
|
|
|
|
Generative Network for Speech Synthesis
|
|
|
|
|
|
|
|
|
|
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/) Faster than real time
|
|
|
|
|
WaveNet.
|
2018-05-03 22:10:51 +00:00
|
|
|
|
|
|
|
|
## Acknowledgements
|
2018-05-04 00:18:17 +00:00
|
|
|
This implementation uses code from the following repos: [Keith
|
|
|
|
|
Ito](https://github.com/keithito/tacotron/), [Prem
|
|
|
|
|
Seetharaman](https://github.com/pseeth/pytorch-stft) as described in our code.
|
2018-05-03 22:10:51 +00:00
|
|
|
|
2018-05-04 00:18:17 +00:00
|
|
|
We are inspired by [Ryuchi Yamamoto's](https://github.com/r9y9/tacotron_pytorch)
|
|
|
|
|
Tacotron PyTorch implementation.
|
|
|
|
|
|
|
|
|
|
We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan
|
|
|
|
|
Wang and Zongheng Yang.
|
2018-05-03 22:10:51 +00:00
|
|
|
|
|
|
|
|
|
2018-11-27 16:03:34 +00:00
|
|
|
[WaveGlow]: https://drive.google.com/file/d/1cjKPHbtAMh_4HTHmuIGNkbOkPBD9qwhj/view?usp=sharing
|
|
|
|
|
[Tacotron 2]: https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view?usp=sharing
|
|
|
|
|
[pytorch 1.0]: https://github.com/pytorch/pytorch#installation
|
|
|
|
|
[website]: https://nv-adlr.github.io/WaveGlow
|
2019-03-16 00:38:40 +00:00
|
|
|
[ignored]: https://github.com/NVIDIA/tacotron2/blob/master/hparams.py#L22
|
2019-04-03 21:51:36 +00:00
|
|
|
[Apex]: https://github.com/nvidia/apex
|
|
|
|
|
[AMP]: https://github.com/NVIDIA/apex/tree/master/apex/amp
|