2018-05-03 22:10:51 +00:00
# Tacotron 2 (without wavenet)
Tacotron 2 PyTorch implementation of [Natural TTS Synthesis By Conditioning
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
This implementation includes **distributed** and **fp16** support
and uses the [LJSpeech dataset ](https://keithito.com/LJ-Speech-Dataset/ ).
Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's
2018-05-03 22:15:04 +00:00
[Apex Library ](https://github.com/nvidia/apex ).
2018-05-03 22:10:51 +00:00

2018-06-05 00:12:32 +00:00
[Download demo audio ](https://github.com/NVIDIA/tacotron2/blob/master/demo.wav ) trained on LJS and using Ryuchi Yamamoto's [pre-trained Mixture of Logistics
2018-06-04 23:55:17 +00:00
wavenet](https://github.com/r9y9/wavenet_vocoder/)
"Scientists at the CERN laboratory say they have discovered a new particle."
2018-05-03 22:10:51 +00:00
## Pre-requisites
1. NVIDIA GPU + CUDA cuDNN
## Setup
1. Download and extract the [LJ Speech dataset ](https://keithito.com/LJ-Speech-Dataset/ )
2. Clone this repo: `git clone https://github.com/NVIDIA/tacotron2.git`
3. CD into this repo: `cd tacotron2`
2018-05-04 00:18:17 +00:00
4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt`
2018-05-15 15:50:21 +00:00
- Alternatively, set `load_mel_from_disk=True` in `hparams.py` and update mel-spectrogram paths
2018-05-03 22:10:51 +00:00
5. Install [pytorch 0.4 ](https://github.com/pytorch/pytorch )
2018-05-04 16:42:11 +00:00
6. Install python requirements or build docker image
2018-05-05 06:06:58 +00:00
- Install python requirements: `pip install -r requirements.txt`
2018-05-03 22:10:51 +00:00
- **OR**
2018-05-04 16:42:11 +00:00
- Build docker image: `docker build --tag tacotron2 .`
2018-05-03 22:10:51 +00:00
## Training
1. `python train.py --output_directory=outdir --log_directory=logdir`
2. (OPTIONAL) `tensorboard --logdir=outdir/logdir`
## Multi-GPU (distributed) and FP16 Training
2018-05-04 16:09:24 +00:00
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
2018-05-03 22:10:51 +00:00
## Inference
1. `jupyter notebook --ip=127.0.0.1 --port=31337`
2. load inference.ipynb
## Related repos
[nv-wavenet ](https://github.com/NVIDIA/nv-wavenet/ ): Faster than real-time
wavenet inference
## Acknowledgements
2018-05-04 00:18:17 +00:00
This implementation uses code from the following repos: [Keith
Ito](https://github.com/keithito/tacotron/), [Prem
Seetharaman](https://github.com/pseeth/pytorch-stft) as described in our code.
2018-05-03 22:10:51 +00:00
2018-05-04 00:18:17 +00:00
We are inspired by [Ryuchi Yamamoto's ](https://github.com/r9y9/tacotron_pytorch )
Tacotron PyTorch implementation.
We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan
Wang and Zongheng Yang.
2018-05-03 22:10:51 +00:00