fixed wav header issue

tegra
Malar Kannan 2020-03-18 15:13:21 +05:30
parent 880dd8bf6a
commit 4f4371c944
4 changed files with 147 additions and 31 deletions

View File

@ -10,6 +10,7 @@ CHECKPOINT_ENCODER = os.environ.get(
CHECKPOINT_DECODER = os.environ.get(
"JASPER_DECODER_CHECKPOINT", "/models/jasper/JasperDecoderForCTC-STEP-265520.pt"
)
KEN_LM = os.environ.get("JASPER_KEN_LM", "/models/jasper/kenlm.pt")
def arg_parser():
@ -18,15 +19,42 @@ def arg_parser():
prog=prog, description=f"generates transcription of the audio_file"
)
parser.add_argument(
"--audio_file",
"audio_file",
type=Path,
help="audio file(16khz 1channel int16 wav) to transcribe",
)
parser.add_argument(
"--greedy", type=bool, default=False, help="enables greedy decoding"
)
parser.add_argument(
"--model_yaml",
type=Path,
default=Path(MODEL_YAML),
help="model config yaml file",
)
parser.add_argument(
"--encoder_checkpoint",
type=Path,
default=Path(CHECKPOINT_ENCODER),
help="encoder checkpoint weights file",
)
parser.add_argument(
"--decoder_checkpoint",
type=Path,
default=Path(CHECKPOINT_DECODER),
help="decoder checkpoint weights file",
)
parser.add_argument(
"--language_model", type=Path, default=None, help="kenlm language model file"
)
return parser
def main():
parser = arg_parser()
args = parser.parse_args()
jasper_asr = JasperASR(MODEL_YAML, CHECKPOINT_ENCODER, CHECKPOINT_DECODER)
jasper_asr.transcribe_file(args.audio_file)
args_dict = vars(args)
audio_file = args_dict.pop("audio_file")
greedy = args_dict.pop("greedy")
jasper_asr = JasperASR(**args_dict)
jasper_asr.transcribe_file(audio_file, greedy)

View File

@ -1,8 +1,11 @@
import os
import tempfile
from ruamel.yaml import YAML
import json
import nemo
import nemo.collections.asr as nemo_asr
import wave
from nemo.collections.asr.helpers import post_process_predictions
logging = nemo.logging
@ -12,7 +15,9 @@ WORK_DIR = "/tmp"
class JasperASR(object):
"""docstring for JasperASR."""
def __init__(self, model_yaml, encoder_checkpoint, decoder_checkpoint):
def __init__(
self, model_yaml, encoder_checkpoint, decoder_checkpoint, language_model=None
):
super(JasperASR, self).__init__()
# Read model YAML
yaml = YAML(typ="safe")
@ -36,14 +41,30 @@ class JasperASR(object):
)
self.jasper_decoder.restore_from(decoder_checkpoint, local_rank=0)
self.greedy_decoder = nemo_asr.GreedyCTCDecoder()
self.beam_search_with_lm = None
if language_model:
self.beam_search_with_lm = nemo_asr.BeamSearchDecoderWithLM(
vocab=self.labels,
beam_width=64,
alpha=2.0,
beta=1.0,
lm_path=language_model,
num_cpus=max(os.cpu_count(), 1),
)
def transcribe(self, audio_data, greedy=True):
audio_file = tempfile.NamedTemporaryFile(
dir=WORK_DIR, prefix="jasper_audio.", delete=False
)
audio_file.write(audio_data)
# audio_file.write(audio_data)
audio_file.close()
audio_file_path = audio_file.name
wf = wave.open(audio_file_path, "w")
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(16000)
wf.writeframesraw(audio_data)
wf.close()
manifest = {"audio_filepath": audio_file_path, "duration": 60, "text": "todo"}
manifest_file = tempfile.NamedTemporaryFile(
dir=WORK_DIR, prefix="jasper_manifest.", delete=False, mode="w"
@ -69,32 +90,32 @@ class JasperASR(object):
log_probs = self.jasper_decoder(encoder_output=encoded)
predictions = self.greedy_decoder(log_probs=log_probs)
# if ENABLE_NGRAM:
# logging.info('Running with beam search')
# beam_predictions = beam_search_with_lm(log_probs=log_probs, log_probs_length=encoded_len)
# eval_tensors = [beam_predictions]
# if greedy:
eval_tensors = [predictions]
if greedy:
eval_tensors = [predictions]
else:
if self.beam_search_with_lm:
logging.info("Running with beam search")
beam_predictions = self.beam_search_with_lm(
log_probs=log_probs, log_probs_length=encoded_len
)
eval_tensors = [beam_predictions]
else:
logging.info(
"language_model not specified. falling back to greedy decoding."
)
eval_tensors = [predictions]
tensors = self.neural_factory.infer(tensors=eval_tensors)
if greedy:
from nemo.collections.asr.helpers import post_process_predictions
prediction = post_process_predictions(tensors[0], self.labels)
else:
prediction = tensors[0][0][0][0][1]
prediction = post_process_predictions(tensors[0], self.labels)
prediction_text = ". ".join(prediction)
return prediction_text
def transcribe_file(self, audio_file):
def transcribe_file(self, audio_file, *args, **kwargs):
tscript_file_path = audio_file.with_suffix(".txt")
audio_file_path = str(audio_file)
try:
with open(audio_file_path, "rb") as af:
audio_data = af.read()
transcription = self.transcribe(audio_data)
with open(tscript_file_path, "w") as tf:
tf.write(transcription)
except BaseException as e:
logging.info(f"an error occurred during transcrption: {e}")
with wave.open(audio_file_path, "r") as af:
frame_count = af.getnframes()
audio_data = af.readframes(frame_count)
transcription = self.transcribe(audio_data, *args, **kwargs)
with open(tscript_file_path, "w") as tf:
tf.write(transcription)

56
jasper/server.py Normal file
View File

@ -0,0 +1,56 @@
import os
import logging
import rpyc
from rpyc.utils.server import ThreadedServer
from .asr import JasperASR
MODEL_YAML = os.environ.get("JASPER_MODEL_CONFIG", "/models/jasper/jasper10x5dr.yaml")
CHECKPOINT_ENCODER = os.environ.get(
"JASPER_ENCODER_CHECKPOINT", "/models/jasper/JasperEncoder-STEP-265520.pt"
)
CHECKPOINT_DECODER = os.environ.get(
"JASPER_DECODER_CHECKPOINT", "/models/jasper/JasperDecoderForCTC-STEP-265520.pt"
)
KEN_LM = os.environ.get("JASPER_KEN_LM", None)
asr_recognizer = JasperASR(MODEL_YAML, CHECKPOINT_ENCODER, CHECKPOINT_DECODER, KEN_LM)
class ASRService(rpyc.Service):
def on_connect(self, conn):
# code that runs when a connection is created
# (to init the service, if needed)
pass
def on_disconnect(self, conn):
# code that runs after the connection has already closed
# (to finalize the service, if needed)
pass
def exposed_transcribe(self, utterance: bytes): # this is an exposed method
speech_audio = asr_recognizer.transcribe(utterance)
return speech_audio
def exposed_transcribe_cb(
self, utterance: bytes, respond
): # this is an exposed method
speech_audio = asr_recognizer.transcribe(utterance)
respond(speech_audio)
def main():
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
port = int(os.environ.get("ASR_RPYC_PORT", "8044"))
logging.info("starting tts server...")
t = ThreadedServer(ASRService, port=port)
t.start()
if __name__ == "__main__":
main()

View File

@ -1,5 +1,12 @@
from setuptools import setup
requirements = [
"ruamel.yaml",
"nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo.git@09e3ba4dfe333f86d6c5c1048e07210924294be9#egg=nemo_toolkit",
]
extra_requirements = {"server": ["rpyc==4.1.4"]}
setup(
name="jasper-asr",
version="0.1",
@ -8,10 +15,14 @@ setup(
author="Malar Kannan",
author_email="malarkannan.invention@gmail.com",
license="MIT",
install_requires=[
"nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo.git@09e3ba4dfe333f86d6c5c1048e07210924294be9#egg=nemo_toolkit"
],
install_requires=requirements,
extras_require=extra_requirements,
packages=["."],
entry_points={"console_scripts": ["jasper_transcribe = jasper.__main__:main"]},
entry_points={
"console_scripts": [
"jasper_transcribe = jasper.__main__:main",
"asr_rpyc_server = jasper.server:main",
]
},
zip_safe=False,
)