speech-scoring/segment_model.py

105 lines
3.6 KiB
Python

from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from keras.models import Model,load_model,model_from_yaml
from keras.layers import Input,Concatenate,Lambda, Reshape, Dropout
from keras.layers import Dense,Conv2D, LSTM, Bidirectional, GRU
from keras.layers import BatchNormalization
from keras.losses import categorical_crossentropy
from keras.utils import to_categorical
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
from keras.utils import plot_model
from speech_tools import create_dir,step_count
from segment_data import segment_data_gen
# TODO implement ctc losses
# https://github.com/fchollet/keras/blob/master/examples/image_ocr.py
def accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype)))
def segment_model(input_dim):
inp = Input(shape=input_dim)
# ls0 = LSTM(512, return_sequences=True)(inp)
cnv1 = Conv2D(filters=512, kernel_size=(5,9))(inp)
cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1)
dr_cnv2 = Dropout(rate=0.95)(cnv2)
cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value)
r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2)
b_gr1 = Bidirectional(GRU(512, return_sequences=True))(r_dr_cnv2)
b_gr2 = Bidirectional(GRU(512, return_sequences=True))(b_gr1)
b_gr3 = Bidirectional(GRU(512))(b_gr2)
return Model(inp, b_gr3)
def write_model_arch(mod,mod_file):
model_f = open(mod_file,'w')
model_f.write(mod.to_yaml())
model_f.close()
def load_model_arch(mod_file):
model_f = open(mod_file,'r')
mod = model_from_yaml(model_f.read())
model_f.close()
return mod
def train_segment(collection_name = 'test'):
batch_size = 128
model_dir = './models/segment/'+collection_name
create_dir(model_dir)
log_dir = './logs/segment/'+collection_name
create_dir(log_dir)
tr_gen_fn = segment_data_gen()
tr_gen = tr_gen_fn()
input_dim = (n_step, n_features)
model = segment_model(input_dim)
plot_model(model,show_shapes=True, to_file=model_dir+'/model.png')
tb_cb = TensorBoard(
log_dir=log_dir,
histogram_freq=1,
batch_size=32,
write_graph=True,
write_grads=True,
write_images=True,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None)
cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5'
cp_cb = ModelCheckpoint(
cp_file_fmt,
monitor='val_loss',
verbose=0,
save_best_only=True,
save_weights_only=True,
mode='auto',
period=1)
# train
rms = RMSprop()
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml')
epoch_n_steps = step_count(n_records,batch_size)
model.fit_generator(tr_gen
, epochs=1000
, steps_per_epoch=epoch_n_steps
, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
, max_queue_size=32
, callbacks=[tb_cb, cp_cb])
model.save(model_dir+'/speech_segment_model-final.h5')
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
# te_acc = compute_accuracy(te_y, y_pred)
# print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
if __name__ == '__main__':
import pdb; pdb.set_trace()
train_segment('test')