from __future__ import absolute_import from __future__ import print_function import numpy as np from keras.models import Model,load_model,model_from_yaml from keras.layers import Input,Concatenate,Lambda, Reshape, Dropout from keras.layers import Dense,Conv2D, LSTM, Bidirectional, GRU from keras.layers import BatchNormalization from keras.losses import categorical_crossentropy from keras.utils import to_categorical from keras.optimizers import RMSprop from keras.callbacks import TensorBoard, ModelCheckpoint from keras import backend as K from keras.utils import plot_model from speech_tools import create_dir,step_count from segment_data import segment_data_gen # TODO implement ctc losses # https://github.com/fchollet/keras/blob/master/examples/image_ocr.py def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype))) def segment_model(input_dim): inp = Input(shape=input_dim) # ls0 = LSTM(512, return_sequences=True)(inp) cnv1 = Conv2D(filters=512, kernel_size=(5,9))(inp) cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1) dr_cnv2 = Dropout(rate=0.95)(cnv2) cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value) r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2) b_gr1 = Bidirectional(GRU(512, return_sequences=True))(r_dr_cnv2) b_gr2 = Bidirectional(GRU(512, return_sequences=True))(b_gr1) b_gr3 = Bidirectional(GRU(512))(b_gr2) return Model(inp, b_gr3) def write_model_arch(mod,mod_file): model_f = open(mod_file,'w') model_f.write(mod.to_yaml()) model_f.close() def load_model_arch(mod_file): model_f = open(mod_file,'r') mod = model_from_yaml(model_f.read()) model_f.close() return mod def train_segment(collection_name = 'test'): batch_size = 128 model_dir = './models/segment/'+collection_name create_dir(model_dir) log_dir = './logs/segment/'+collection_name create_dir(log_dir) tr_gen_fn = segment_data_gen() tr_gen = tr_gen_fn() input_dim = (n_step, n_features) model = segment_model(input_dim) plot_model(model,show_shapes=True, to_file=model_dir+'/model.png') tb_cb = TensorBoard( log_dir=log_dir, histogram_freq=1, batch_size=32, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\ -acc.h5' cp_cb = ModelCheckpoint( cp_file_fmt, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1) # train rms = RMSprop() model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy]) write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml') epoch_n_steps = step_count(n_records,batch_size) model.fit_generator(tr_gen , epochs=1000 , steps_per_epoch=epoch_n_steps , validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y) , max_queue_size=32 , callbacks=[tb_cb, cp_cb]) model.save(model_dir+'/speech_segment_model-final.h5') y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) # te_acc = compute_accuracy(te_y, y_pred) # print('* Accuracy on test set: %0.2f%%' % (100 * te_acc)) if __name__ == '__main__': import pdb; pdb.set_trace() train_segment('test')