Compare commits
4 Commits
c0369d7a66
...
c8a07b3d7b
| Author | SHA1 | Date |
|---|---|---|
|
|
c8a07b3d7b | |
|
|
8785522196 | |
|
|
435c4a4aa6 | |
|
|
c1801b5aa3 |
|
|
@ -176,6 +176,69 @@ def create_segments_tfrecords(collection_name='story_test_segments',sample_count
|
||||||
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
||||||
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
||||||
|
|
||||||
|
def record_generator_count(records_file):
|
||||||
|
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||||
|
count,spec_n = 0,0
|
||||||
|
for i in record_iterator:
|
||||||
|
count+=1
|
||||||
|
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||||
|
return record_iterator,count
|
||||||
|
|
||||||
|
def read_segments_tfrecords_generator(collection_name='audio',batch_size=32,test_size=0):
|
||||||
|
records_file = './outputs/segments/'+collection_name+'/train.tfrecords'
|
||||||
|
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
||||||
|
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
|
||||||
|
|
||||||
|
def copy_read_consts(dest_dir):
|
||||||
|
shutil.copy2(const_file,dest_dir+'/constants.pkl')
|
||||||
|
return (n_spec,n_features,n_records)
|
||||||
|
# @threadsafe_iter
|
||||||
|
def record_generator():
|
||||||
|
print('reading tfrecords({}-train)...'.format(collection_name))
|
||||||
|
input_data = []
|
||||||
|
output_data = []
|
||||||
|
while True:
|
||||||
|
record_iterator,records_count = record_generator_count(records_file)
|
||||||
|
for (i,string_record) in enumerate(record_iterator):
|
||||||
|
example = tf.train.Example()
|
||||||
|
example.ParseFromString(string_record)
|
||||||
|
spec_n = example.features.feature['spec_n'].int64_list.value[0]
|
||||||
|
spec_w = example.features.feature['spec_w'].int64_list.value[0]
|
||||||
|
spec = np.array(example.features.feature['spec'].float_list.value).reshape(spec_n,spec_w)
|
||||||
|
spec = np.array(example.features.feature['output'].int64_list.value)
|
||||||
|
p_spec = padd_zeros(spec,n_spec)
|
||||||
|
input_data.append(p_spec)
|
||||||
|
output = example.features.feature['output'].int64_list.value
|
||||||
|
output_data.append(np.asarray(output))
|
||||||
|
if len(input_data) == batch_size or i == n_records-1:
|
||||||
|
input_arr = np.asarray(input_data)
|
||||||
|
output_arr = np.asarray(output_data)
|
||||||
|
yield (input_arr,output_arr)
|
||||||
|
input_data = []
|
||||||
|
output_data = []
|
||||||
|
|
||||||
|
# Read test in one-shot
|
||||||
|
# collection_name = 'story_test'
|
||||||
|
print('reading tfrecords({}-test)...'.format(collection_name))
|
||||||
|
te_records_file = './outputs/segments/'+collection_name+'/test.tfrecords'
|
||||||
|
te_re_iterator,te_n_records = record_generator_count(te_records_file)
|
||||||
|
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
|
||||||
|
input_data = np.zeros((test_size,2,n_spec,n_features))
|
||||||
|
output_data = np.zeros((test_size,2))
|
||||||
|
random_samples = enumerate(reservoir_sample(te_re_iterator,test_size))
|
||||||
|
for (i,string_record) in tqdm(random_samples,total=test_size):
|
||||||
|
example = tf.train.Example()
|
||||||
|
example.ParseFromString(string_record)
|
||||||
|
spec_n = example.features.feature['spec_n'].int64_list.value[0]
|
||||||
|
spec_w = example.features.feature['spec_w'].int64_list.value[0]
|
||||||
|
spec = np.array(example.features.feature['spec'].float_list.value).reshape(spec_n,spec_w)
|
||||||
|
p_spec = padd_zeros(spec,n_spec)
|
||||||
|
input_data[i] = p_spec
|
||||||
|
output = example.features.feature['output'].int64_list.value
|
||||||
|
output_data[i] = np.asarray(output)
|
||||||
|
|
||||||
|
return record_generator,input_data,output_data,copy_read_consts
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# plot_random_phrases()
|
# plot_random_phrases()
|
||||||
# fix_csv('story_test_segments')
|
# fix_csv('story_test_segments')
|
||||||
|
|
|
||||||
|
|
@ -12,7 +12,13 @@ from keras.callbacks import TensorBoard, ModelCheckpoint
|
||||||
from keras import backend as K
|
from keras import backend as K
|
||||||
from keras.utils import plot_model
|
from keras.utils import plot_model
|
||||||
from speech_tools import create_dir,step_count
|
from speech_tools import create_dir,step_count
|
||||||
from segment_data import segment_data_gen
|
from segment_data import read_segments_tfrecords_generator
|
||||||
|
|
||||||
|
import importlib
|
||||||
|
import segment_data
|
||||||
|
import speech_tools
|
||||||
|
importlib.reload(segment_data)
|
||||||
|
importlib.reload(speech_tools)
|
||||||
|
|
||||||
|
|
||||||
# TODO implement ctc losses
|
# TODO implement ctc losses
|
||||||
|
|
@ -48,22 +54,16 @@ def segment_model(input_dim):
|
||||||
return Model(inp, oup)
|
return Model(inp, oup)
|
||||||
|
|
||||||
def simple_segment_model(input_dim):
|
def simple_segment_model(input_dim):
|
||||||
input_dim = (100,100,1)
|
# input_dim = (100,100)
|
||||||
inp = Input(shape=input_dim)
|
inp = Input(shape=input_dim)
|
||||||
cnv1 = Conv2D(filters=32, kernel_size=(5,9))(inp)
|
b_gr1 = Bidirectional(GRU(256, return_sequences=True),merge_mode='sum')(inp)
|
||||||
cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1)
|
|
||||||
dr_cnv2 = Dropout(rate=0.95)(cnv2)
|
|
||||||
# dr_cnv2
|
|
||||||
cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value)
|
|
||||||
r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2)
|
|
||||||
b_gr1 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(r_dr_cnv2)
|
|
||||||
# b_gr1
|
# b_gr1
|
||||||
b_gr2 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr1)
|
b_gr2 = Bidirectional(GRU(64, return_sequences=True),merge_mode='sum')(b_gr1)
|
||||||
b_gr3 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr2)
|
b_gr3 = Bidirectional(GRU(1, return_sequences=True),merge_mode='sum')(b_gr2)
|
||||||
# b_gr3
|
# b_gr3
|
||||||
oup = Dense(2, activation='softmax')(b_gr3)
|
# oup = Dense(2, activation='softmax')(b_gr3)
|
||||||
# oup
|
# oup
|
||||||
return Model(inp, oup)
|
return Model(inp, b_gr3)
|
||||||
|
|
||||||
def write_model_arch(mod,mod_file):
|
def write_model_arch(mod,mod_file):
|
||||||
model_f = open(mod_file,'w')
|
model_f = open(mod_file,'w')
|
||||||
|
|
@ -77,15 +77,16 @@ def load_model_arch(mod_file):
|
||||||
return mod
|
return mod
|
||||||
|
|
||||||
def train_segment(collection_name = 'test'):
|
def train_segment(collection_name = 'test'):
|
||||||
|
collection_name = 'story_test'
|
||||||
batch_size = 128
|
batch_size = 128
|
||||||
model_dir = './models/segment/'+collection_name
|
model_dir = './models/segment/'+collection_name
|
||||||
create_dir(model_dir)
|
create_dir(model_dir)
|
||||||
log_dir = './logs/segment/'+collection_name
|
log_dir = './logs/segment/'+collection_name
|
||||||
create_dir(log_dir)
|
create_dir(log_dir)
|
||||||
tr_gen_fn = segment_data_gen()
|
tr_gen_fn,inp,oup,copy_read_consts = read_segments_tfrecords_generator(collection_name,batch_size,2*batch_size)
|
||||||
tr_gen = tr_gen_fn()
|
tr_gen = tr_gen_fn()
|
||||||
|
n_step,n_features,n_records = copy_read_consts(model_dir)
|
||||||
input_dim = (n_step, n_features)
|
input_dim = (n_step, n_features)
|
||||||
|
|
||||||
model = simple_segment_model(input_dim)
|
model = simple_segment_model(input_dim)
|
||||||
plot_model(model,show_shapes=True, to_file=model_dir+'/model.png')
|
plot_model(model,show_shapes=True, to_file=model_dir+'/model.png')
|
||||||
# loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
|
# loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,6 @@ from speech_spectrum import generate_aiff_spectrogram
|
||||||
from speech_pitch import pitch_array
|
from speech_pitch import pitch_array
|
||||||
from speech_pitch import compute_mfcc
|
from speech_pitch import compute_mfcc
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
import itertools
|
|
||||||
import os,shutil
|
import os,shutil
|
||||||
import random
|
import random
|
||||||
import csv
|
import csv
|
||||||
|
|
@ -168,7 +167,7 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size
|
||||||
# Read test in one-shot
|
# Read test in one-shot
|
||||||
print('reading tfrecords({}-test)...'.format(audio_group))
|
print('reading tfrecords({}-test)...'.format(audio_group))
|
||||||
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
|
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
|
||||||
te_re_iterator,te_n_records = record_generator_count(records_file)
|
te_re_iterator,te_n_records = record_generator_count(te_records_file)
|
||||||
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
|
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
|
||||||
input_data = np.zeros((test_size,2,n_spec,n_features))
|
input_data = np.zeros((test_size,2,n_spec,n_features))
|
||||||
output_data = np.zeros((test_size,2))
|
output_data = np.zeros((test_size,2))
|
||||||
|
|
|
||||||
|
|
@ -74,7 +74,7 @@ def load_model_arch(mod_file):
|
||||||
model_f.close()
|
model_f.close()
|
||||||
return mod
|
return mod
|
||||||
|
|
||||||
def train_siamese(audio_group = 'audio'):
|
def train_siamese(audio_group = 'audio',resume_weights='',initial_epoch=0):
|
||||||
batch_size = 128
|
batch_size = 128
|
||||||
model_dir = './models/'+audio_group
|
model_dir = './models/'+audio_group
|
||||||
create_dir(model_dir)
|
create_dir(model_dir)
|
||||||
|
|
@ -114,19 +114,22 @@ def train_siamese(audio_group = 'audio'):
|
||||||
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
|
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
|
||||||
write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml')
|
write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml')
|
||||||
epoch_n_steps = step_count(n_records,batch_size)
|
epoch_n_steps = step_count(n_records,batch_size)
|
||||||
|
if resume_weights != '':
|
||||||
|
model.load_weights(resume_weights)
|
||||||
model.fit_generator(tr_gen
|
model.fit_generator(tr_gen
|
||||||
, epochs=1000
|
, epochs=1000
|
||||||
, steps_per_epoch=epoch_n_steps
|
, steps_per_epoch=epoch_n_steps
|
||||||
, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
|
, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
|
||||||
, max_queue_size=8
|
, max_queue_size=8
|
||||||
, callbacks=[tb_cb, cp_cb])
|
, callbacks=[tb_cb, cp_cb],initial_epoch=initial_epoch)
|
||||||
model.save(model_dir+'/siamese_speech_model-final.h5')
|
model.save(model_dir+'/siamese_speech_model-final.h5')
|
||||||
|
|
||||||
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
|
# y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
|
||||||
te_acc = compute_accuracy(te_y, y_pred)
|
# te_acc = compute_accuracy(te_y, y_pred)
|
||||||
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
|
# print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
train_siamese('story_words_pitch')
|
train_siamese('story_words_pitch')
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -2,6 +2,8 @@ import os
|
||||||
import math
|
import math
|
||||||
import string
|
import string
|
||||||
import threading
|
import threading
|
||||||
|
import itertools
|
||||||
|
import random
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue