implented segment tfrecords batch data-generator

master
Malar Kannan 2017-12-07 11:48:19 +05:30
parent c0369d7a66
commit c1801b5aa3
4 changed files with 82 additions and 17 deletions

View File

@ -176,6 +176,69 @@ def create_segments_tfrecords(collection_name='story_test_segments',sample_count
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
def record_generator_count(records_file):
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
count,spec_n = 0,0
for i in record_iterator:
count+=1
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
return record_iterator,count
def read_segments_tfrecords_generator(collection_name='audio',batch_size=32,test_size=0):
records_file = './outputs/segments/'+collection_name+'/train.tfrecords'
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
def copy_read_consts(dest_dir):
shutil.copy2(const_file,dest_dir+'/constants.pkl')
return (n_spec,n_features,n_records)
# @threadsafe_iter
def record_generator():
print('reading tfrecords({}-train)...'.format(collection_name))
input_data = []
output_data = []
while True:
record_iterator,records_count = record_generator_count(records_file)
for (i,string_record) in enumerate(record_iterator):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n = example.features.feature['spec_n'].int64_list.value[0]
spec_w = example.features.feature['spec_w'].int64_list.value[0]
spec = np.array(example.features.feature['spec'].float_list.value).reshape(spec_n,spec_w)
spec = np.array(example.features.feature['output'].int64_list.value)
p_spec = padd_zeros(spec,n_spec)
input_data.append(p_spec)
output = example.features.feature['output'].int64_list.value
output_data.append(np.asarray(output))
if len(input_data) == batch_size or i == n_records-1:
input_arr = np.asarray(input_data)
output_arr = np.asarray(output_data)
yield (input_arr,output_arr)
input_data = []
output_data = []
# Read test in one-shot
# collection_name = 'story_test'
print('reading tfrecords({}-test)...'.format(collection_name))
te_records_file = './outputs/segments/'+collection_name+'/test.tfrecords'
te_re_iterator,te_n_records = record_generator_count(te_records_file)
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
input_data = np.zeros((test_size,2,n_spec,n_features))
output_data = np.zeros((test_size,2))
random_samples = enumerate(reservoir_sample(te_re_iterator,test_size))
for (i,string_record) in tqdm(random_samples,total=test_size):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n = example.features.feature['spec_n'].int64_list.value[0]
spec_w = example.features.feature['spec_w'].int64_list.value[0]
spec = np.array(example.features.feature['spec'].float_list.value).reshape(spec_n,spec_w)
p_spec = padd_zeros(spec,n_spec)
input_data[i] = p_spec
output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output)
return record_generator,input_data,output_data,copy_read_consts
if __name__ == '__main__':
# plot_random_phrases()
# fix_csv('story_test_segments')

View File

@ -12,7 +12,13 @@ from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
from keras.utils import plot_model
from speech_tools import create_dir,step_count
from segment_data import segment_data_gen
from segment_data import read_segments_tfrecords_generator
import importlib
import segment_data
import speech_tools
importlib.reload(segment_data)
importlib.reload(speech_tools)
# TODO implement ctc losses
@ -48,22 +54,16 @@ def segment_model(input_dim):
return Model(inp, oup)
def simple_segment_model(input_dim):
input_dim = (100,100,1)
# input_dim = (100,100)
inp = Input(shape=input_dim)
cnv1 = Conv2D(filters=32, kernel_size=(5,9))(inp)
cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1)
dr_cnv2 = Dropout(rate=0.95)(cnv2)
# dr_cnv2
cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value)
r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2)
b_gr1 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(r_dr_cnv2)
b_gr1 = Bidirectional(GRU(256, return_sequences=True),merge_mode='sum')(inp)
# b_gr1
b_gr2 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr1)
b_gr3 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr2)
b_gr2 = Bidirectional(GRU(64, return_sequences=True),merge_mode='sum')(b_gr1)
b_gr3 = Bidirectional(GRU(1, return_sequences=True),merge_mode='sum')(b_gr2)
# b_gr3
oup = Dense(2, activation='softmax')(b_gr3)
# oup = Dense(2, activation='softmax')(b_gr3)
# oup
return Model(inp, oup)
return Model(inp, b_gr3)
def write_model_arch(mod,mod_file):
model_f = open(mod_file,'w')
@ -77,15 +77,16 @@ def load_model_arch(mod_file):
return mod
def train_segment(collection_name = 'test'):
collection_name = 'story_test'
batch_size = 128
model_dir = './models/segment/'+collection_name
create_dir(model_dir)
log_dir = './logs/segment/'+collection_name
create_dir(log_dir)
tr_gen_fn = segment_data_gen()
tr_gen_fn,inp,oup,copy_read_consts = read_segments_tfrecords_generator(collection_name,batch_size,2*batch_size)
tr_gen = tr_gen_fn()
n_step,n_features,n_records = copy_read_consts(model_dir)
input_dim = (n_step, n_features)
model = simple_segment_model(input_dim)
plot_model(model,show_shapes=True, to_file=model_dir+'/model.png')
# loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])

View File

@ -9,7 +9,6 @@ from speech_spectrum import generate_aiff_spectrogram
from speech_pitch import pitch_array
from speech_pitch import compute_mfcc
from sklearn.model_selection import train_test_split
import itertools
import os,shutil
import random
import csv
@ -168,7 +167,7 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size
# Read test in one-shot
print('reading tfrecords({}-test)...'.format(audio_group))
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
te_re_iterator,te_n_records = record_generator_count(records_file)
te_re_iterator,te_n_records = record_generator_count(te_records_file)
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
input_data = np.zeros((test_size,2,n_spec,n_features))
output_data = np.zeros((test_size,2))

View File

@ -2,6 +2,8 @@ import os
import math
import string
import threading
import itertools
import random
import multiprocessing
import pandas as pd
import numpy as np