finding number of record by streaming-onepass
parent
3ae8dc50a2
commit
a5d4ede35d
|
|
@ -143,15 +143,16 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size
|
|||
output_class = []
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
|
||||
print('reading tfrecords({}-train)...'.format(audio_group))
|
||||
|
||||
# @threadsafe_iter
|
||||
def record_generator():
|
||||
print('reading tfrecords({}-train)...'.format(audio_group))
|
||||
input_data = []
|
||||
output_data = []
|
||||
while True:
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
#tqdm(enumerate(record_iterator),total=n_records)
|
||||
record_iterator,records_count = record_generator_count(records_file)
|
||||
#tqdm(enumerate(record_iterator),total=records_count)
|
||||
#enumerate(record_iterator)
|
||||
for (i,string_record) in enumerate(record_iterator):
|
||||
example = tf.train.Example()
|
||||
example.ParseFromString(string_record)
|
||||
|
|
@ -173,11 +174,9 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size
|
|||
output_data = []
|
||||
|
||||
# Read test in one-shot
|
||||
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
|
||||
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
te_n_records = len([i for i in te_re_iterator])
|
||||
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
print('reading tfrecords({}-test)...'.format(audio_group))
|
||||
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
|
||||
te_re_iterator,te_n_records = record_generator_count(records_file)
|
||||
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
|
||||
input_data = np.zeros((test_size,2,n_spec,n_features))
|
||||
output_data = np.zeros((test_size,2))
|
||||
|
|
@ -204,7 +203,9 @@ def audio_samples_word_count(audio_group='audio'):
|
|||
|
||||
def record_generator_count(records_file):
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
count = len([i for i in record_iterator])
|
||||
count = 0
|
||||
for i in record_iterator:
|
||||
count+=1
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
return record_iterator,count
|
||||
|
||||
|
|
@ -248,7 +249,7 @@ if __name__ == '__main__':
|
|||
# create_spectrogram_tfrecords('story_all',sample_count=25)
|
||||
# fix_csv('story_words_test')
|
||||
#fix_csv('story_phrases')
|
||||
create_spectrogram_tfrecords('story_phrases',sample_count=10,train_test_ratio=0.1)
|
||||
create_spectrogram_tfrecords('story_phrases',sample_count=0,train_test_ratio=0.1)
|
||||
# create_spectrogram_tfrecords('audio',sample_count=50)
|
||||
# read_siamese_tfrecords_generator('audio')
|
||||
# padd_zeros_siamese_tfrecords('audio')
|
||||
|
|
|
|||
|
|
@ -29,14 +29,13 @@ def test_with(audio_group):
|
|||
def evaluate_siamese(records_file,audio_group='audio',weights = 'siamese_speech_model-final.h5'):
|
||||
# audio_group='audio';model_file = 'siamese_speech_model-305-epoch-0.20-acc.h5'
|
||||
# records_file = os.path.join('./outputs',eval_group+'.train.tfrecords')
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
const_file = os.path.join('./models/'+audio_group+'/',audio_group+'.constants')
|
||||
arch_file='./models/'+audio_group+'/siamese_speech_model_arch.yaml'
|
||||
weight_file='./models/'+audio_group+'/'+weights
|
||||
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
|
||||
print('evaluating {}...'.format(records_file))
|
||||
model = load_model_arch(arch_file)
|
||||
# model = siamese_model((n_spec, n_features))
|
||||
n_spec = 422
|
||||
model.load_weights(weight_file)
|
||||
record_iterator,records_count = record_generator_count(records_file)
|
||||
total,same_success,diff_success,skipped,same_failed,diff_failed = 0,0,0,0,0,0
|
||||
|
|
@ -179,9 +178,9 @@ def visualize_results(audio_group='audio'):
|
|||
if __name__ == '__main__':
|
||||
# evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words.gpu',weights ='siamese_speech_model-58-epoch-0.00-acc.h5')
|
||||
# evaluate_siamese('./outputs/story_words.test.tfrecords',audio_group='story_words',weights ='siamese_speech_model-675-epoch-0.00-acc.h5')
|
||||
# evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5')
|
||||
evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-231-epoch-0.00-acc.h5')
|
||||
# play_results('story_words')
|
||||
inspect_tfrecord('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases')
|
||||
#inspect_tfrecord('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases')
|
||||
# visualize_results('story_words.gpu')
|
||||
# test_with('rand_edu')
|
||||
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
|
||||
|
|
|
|||
Loading…
Reference in New Issue