diff --git a/speech_data.py b/speech_data.py index 48d2ad8..8b3cd84 100644 --- a/speech_data.py +++ b/speech_data.py @@ -143,15 +143,16 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size output_class = [] const_file = os.path.join('./outputs',audio_group+'.constants') (n_spec,n_features,n_records) = pickle.load(open(const_file,'rb')) - print('reading tfrecords({}-train)...'.format(audio_group)) # @threadsafe_iter def record_generator(): + print('reading tfrecords({}-train)...'.format(audio_group)) input_data = [] output_data = [] while True: - record_iterator = tf.python_io.tf_record_iterator(path=records_file) - #tqdm(enumerate(record_iterator),total=n_records) + record_iterator,records_count = record_generator_count(records_file) + #tqdm(enumerate(record_iterator),total=records_count) + #enumerate(record_iterator) for (i,string_record) in enumerate(record_iterator): example = tf.train.Example() example.ParseFromString(string_record) @@ -173,11 +174,9 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size output_data = [] # Read test in one-shot - te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords') - te_re_iterator = tf.python_io.tf_record_iterator(path=records_file) - te_n_records = len([i for i in te_re_iterator]) - te_re_iterator = tf.python_io.tf_record_iterator(path=records_file) print('reading tfrecords({}-test)...'.format(audio_group)) + te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords') + te_re_iterator,te_n_records = record_generator_count(records_file) test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records input_data = np.zeros((test_size,2,n_spec,n_features)) output_data = np.zeros((test_size,2)) @@ -204,7 +203,9 @@ def audio_samples_word_count(audio_group='audio'): def record_generator_count(records_file): record_iterator = tf.python_io.tf_record_iterator(path=records_file) - count = len([i for i in record_iterator]) + count = 0 + for i in record_iterator: + count+=1 record_iterator = tf.python_io.tf_record_iterator(path=records_file) return record_iterator,count @@ -248,7 +249,7 @@ if __name__ == '__main__': # create_spectrogram_tfrecords('story_all',sample_count=25) # fix_csv('story_words_test') #fix_csv('story_phrases') - create_spectrogram_tfrecords('story_phrases',sample_count=10,train_test_ratio=0.1) + create_spectrogram_tfrecords('story_phrases',sample_count=0,train_test_ratio=0.1) # create_spectrogram_tfrecords('audio',sample_count=50) # read_siamese_tfrecords_generator('audio') # padd_zeros_siamese_tfrecords('audio') diff --git a/speech_test.py b/speech_test.py index 32b330c..d2ab72b 100644 --- a/speech_test.py +++ b/speech_test.py @@ -29,14 +29,13 @@ def test_with(audio_group): def evaluate_siamese(records_file,audio_group='audio',weights = 'siamese_speech_model-final.h5'): # audio_group='audio';model_file = 'siamese_speech_model-305-epoch-0.20-acc.h5' # records_file = os.path.join('./outputs',eval_group+'.train.tfrecords') - const_file = os.path.join('./outputs',audio_group+'.constants') + const_file = os.path.join('./models/'+audio_group+'/',audio_group+'.constants') arch_file='./models/'+audio_group+'/siamese_speech_model_arch.yaml' weight_file='./models/'+audio_group+'/'+weights (n_spec,n_features,n_records) = pickle.load(open(const_file,'rb')) print('evaluating {}...'.format(records_file)) model = load_model_arch(arch_file) # model = siamese_model((n_spec, n_features)) - n_spec = 422 model.load_weights(weight_file) record_iterator,records_count = record_generator_count(records_file) total,same_success,diff_success,skipped,same_failed,diff_failed = 0,0,0,0,0,0 @@ -179,9 +178,9 @@ def visualize_results(audio_group='audio'): if __name__ == '__main__': # evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words.gpu',weights ='siamese_speech_model-58-epoch-0.00-acc.h5') # evaluate_siamese('./outputs/story_words.test.tfrecords',audio_group='story_words',weights ='siamese_speech_model-675-epoch-0.00-acc.h5') - # evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5') + evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-231-epoch-0.00-acc.h5') # play_results('story_words') - inspect_tfrecord('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases') + #inspect_tfrecord('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases') # visualize_results('story_words.gpu') # test_with('rand_edu') # sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)