added who data method
parent
8ae5104201
commit
51a6d6e804
|
|
@ -54,15 +54,32 @@ def sunflower_pairs_data():
|
||||||
te_y = np.array(x_pos_test.shape[0]*[[1,0]])
|
te_y = np.array(x_pos_test.shape[0]*[[1,0]])
|
||||||
tr_pairs = np.array([x_pos_train,x_neg_train]).reshape(x_pos_train.shape[0],2,max_samples,sample_size)
|
tr_pairs = np.array([x_pos_train,x_neg_train]).reshape(x_pos_train.shape[0],2,max_samples,sample_size)
|
||||||
te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size)
|
te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size)
|
||||||
# x_data.shape
|
|
||||||
# y_data.shape
|
|
||||||
# train_test_split(x_data,y_data,test_size=0.33)[].shape
|
|
||||||
# len(train_test_split(x_data,y_data,test_size=0.33))
|
|
||||||
# sunflowers.loc[:,'file'][0]
|
|
||||||
# generate_aiff_spectrogram('outputs/sunflowers-Alex-150-normal-589.aiff')
|
|
||||||
# sunflowers[sunflowers['variant'] == 'phoneme']
|
|
||||||
# sunflowers[sunflowers['variant'] == 'normal']
|
|
||||||
# for s in sunflowers.values:
|
|
||||||
# print(s)
|
|
||||||
#return train_test_split(x_data,y_data,test_size=0.33)
|
|
||||||
return tr_pairs,te_pairs,tr_y,te_y
|
return tr_pairs,te_pairs,tr_y,te_y
|
||||||
|
|
||||||
|
|
||||||
|
def speech_pairs_data(audio_group):
|
||||||
|
audio_samples = pd.read_csv('./outputs/'+audio_group+'.csv',names=['word','voice','rate','variant','file'])
|
||||||
|
audio_samples.loc[:,'file'] = audio_samples.loc[:,'file'].apply(lambda x:'outputs/'+audio_group+'/'+x).apply(generate_aiff_spectrogram)
|
||||||
|
y_data = audio_samples['variant'].apply(lambda x:x=='normal').values
|
||||||
|
max_samples = audio_samples['file'].apply(lambda x:x.shape[0]).max()
|
||||||
|
sample_size = audio_samples['file'][0].shape[1]
|
||||||
|
audio_samples_pos = audio_samples[audio_samples['variant'] == 'normal'].reset_index(drop=True)
|
||||||
|
audio_samples_neg = audio_samples[audio_samples['variant'] == 'phoneme'].reset_index(drop=True)
|
||||||
|
def append_zeros(spgr):
|
||||||
|
return np.lib.pad(spgr,[(0, max_samples-spgr.shape[0]), (0,0)],'median')
|
||||||
|
def create_data(sf):
|
||||||
|
sample_count = sf['file'].shape[0]
|
||||||
|
pad_sun = sf['file'].apply(append_zeros).values
|
||||||
|
x_data = np.vstack(pad_sun).reshape((sample_count,max_samples,sample_size))
|
||||||
|
return x_data
|
||||||
|
x_data_pos = create_data(audio_samples_pos)
|
||||||
|
x_data_neg = create_data(audio_samples_neg)
|
||||||
|
x_pos_train, x_pos_test, x_neg_train, x_neg_test =train_test_split(x_data_pos,x_data_neg,test_size=0.33)
|
||||||
|
tr_y = np.array(x_pos_train.shape[0]*[[1,0]])
|
||||||
|
te_y = np.array(x_pos_test.shape[0]*[[1,0]])
|
||||||
|
tr_pairs = np.array([x_pos_train,x_neg_train]).reshape(x_pos_train.shape[0],2,max_samples,sample_size)
|
||||||
|
te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size)
|
||||||
|
return tr_pairs,te_pairs,tr_y,te_y
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print(speech_pairs_data())
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue