diff --git a/speech_data.py b/speech_data.py index 25ea1e2..2d1bb2c 100644 --- a/speech_data.py +++ b/speech_data.py @@ -54,15 +54,32 @@ def sunflower_pairs_data(): te_y = np.array(x_pos_test.shape[0]*[[1,0]]) tr_pairs = np.array([x_pos_train,x_neg_train]).reshape(x_pos_train.shape[0],2,max_samples,sample_size) te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size) - # x_data.shape - # y_data.shape - # train_test_split(x_data,y_data,test_size=0.33)[].shape - # len(train_test_split(x_data,y_data,test_size=0.33)) - # sunflowers.loc[:,'file'][0] - # generate_aiff_spectrogram('outputs/sunflowers-Alex-150-normal-589.aiff') - # sunflowers[sunflowers['variant'] == 'phoneme'] - # sunflowers[sunflowers['variant'] == 'normal'] - # for s in sunflowers.values: - # print(s) - #return train_test_split(x_data,y_data,test_size=0.33) return tr_pairs,te_pairs,tr_y,te_y + + +def speech_pairs_data(audio_group): + audio_samples = pd.read_csv('./outputs/'+audio_group+'.csv',names=['word','voice','rate','variant','file']) + audio_samples.loc[:,'file'] = audio_samples.loc[:,'file'].apply(lambda x:'outputs/'+audio_group+'/'+x).apply(generate_aiff_spectrogram) + y_data = audio_samples['variant'].apply(lambda x:x=='normal').values + max_samples = audio_samples['file'].apply(lambda x:x.shape[0]).max() + sample_size = audio_samples['file'][0].shape[1] + audio_samples_pos = audio_samples[audio_samples['variant'] == 'normal'].reset_index(drop=True) + audio_samples_neg = audio_samples[audio_samples['variant'] == 'phoneme'].reset_index(drop=True) + def append_zeros(spgr): + return np.lib.pad(spgr,[(0, max_samples-spgr.shape[0]), (0,0)],'median') + def create_data(sf): + sample_count = sf['file'].shape[0] + pad_sun = sf['file'].apply(append_zeros).values + x_data = np.vstack(pad_sun).reshape((sample_count,max_samples,sample_size)) + return x_data + x_data_pos = create_data(audio_samples_pos) + x_data_neg = create_data(audio_samples_neg) + x_pos_train, x_pos_test, x_neg_train, x_neg_test =train_test_split(x_data_pos,x_data_neg,test_size=0.33) + tr_y = np.array(x_pos_train.shape[0]*[[1,0]]) + te_y = np.array(x_pos_test.shape[0]*[[1,0]]) + tr_pairs = np.array([x_pos_train,x_neg_train]).reshape(x_pos_train.shape[0],2,max_samples,sample_size) + te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size) + return tr_pairs,te_pairs,tr_y,te_y + +if __name__ == '__main__': + print(speech_pairs_data())