implemented pair data inspection
parent
c81a7b4468
commit
3ae8dc50a2
|
|
@ -103,6 +103,38 @@ def evaluate_siamese(records_file,audio_group='audio',weights = 'siamese_speech_
|
|||
"expected","predicted","success"])
|
||||
result_data.to_csv('./outputs/' + audio_group + '.results.csv')
|
||||
|
||||
def inspect_tfrecord(records_file,audio_group='audio'):
|
||||
record_iterator,records_count = record_generator_count(records_file)
|
||||
all_results = []
|
||||
for (i,string_record) in tqdm(enumerate(record_iterator),total=records_count):
|
||||
# string_record = next(record_iterator)
|
||||
example = tf.train.Example()
|
||||
example.ParseFromString(string_record)
|
||||
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
|
||||
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
|
||||
word = example.features.feature['word'].bytes_list.value[0].decode()
|
||||
phoneme1 = example.features.feature['phoneme1'].bytes_list.value[0].decode()
|
||||
phoneme2 = example.features.feature['phoneme2'].bytes_list.value[0].decode()
|
||||
voice1 = example.features.feature['voice1'].bytes_list.value[0].decode()
|
||||
voice2 = example.features.feature['voice2'].bytes_list.value[0].decode()
|
||||
language = example.features.feature['language'].bytes_list.value[0].decode()
|
||||
rate1 = example.features.feature['rate1'].int64_list.value[0]
|
||||
rate2 = example.features.feature['rate2'].int64_list.value[0]
|
||||
variant1 = example.features.feature['variant1'].bytes_list.value[0].decode()
|
||||
variant2 = example.features.feature['variant2'].bytes_list.value[0].decode()
|
||||
file1 = example.features.feature['file1'].bytes_list.value[0].decode()
|
||||
file2 = example.features.feature['file2'].bytes_list.value[0].decode()
|
||||
output_arr = np.asarray([example.features.feature['output'].int64_list.value])
|
||||
expected = output_arr[0]
|
||||
result = {"phoneme1":phoneme1,"phoneme2":phoneme2,"voice1":voice1
|
||||
,"voice2":voice2,"rate1":rate1,"rate2":rate2,"spec_n1":spec_n1
|
||||
,"spec_n2":spec_n2,"variant1":variant1,"variant2":variant2
|
||||
,"file1":file1,"file2":file2,"expected":expected[0]}
|
||||
all_results.append(result)
|
||||
result_data = pd.DataFrame(all_results,columns=["phoneme1","phoneme2"
|
||||
,"voice1","voice2","rate1","rate2","spec_n1","spec_n2","variant1","variant2","file1","file2",
|
||||
"expected"])
|
||||
result_data.to_csv('./outputs/' + audio_group + '.pairs.csv')
|
||||
|
||||
def play_results(audio_group='audio'):
|
||||
result_data = pd.read_csv('./outputs/' + audio_group + '.results.csv')
|
||||
|
|
@ -133,8 +165,10 @@ def play_results(audio_group='audio'):
|
|||
def visualize_results(audio_group='audio'):
|
||||
# %matplotlib inline
|
||||
audio_group = 'story_phrases'
|
||||
source = pd.read_csv('./outputs/'+audio_group+'.pairs.csv',index_col=0)
|
||||
source.groupby(['voice1','voice2']).size()
|
||||
result = pd.read_csv('./outputs/' + audio_group + '.results.csv',index_col=0)
|
||||
result.groupby('success').size().plot(kind='bar')
|
||||
# result.groupby('success').size().plot(kind='bar')
|
||||
result.describe(include=['object'])
|
||||
failed = result[result['success'] == False]
|
||||
same_failed = failed[failed['variant1'] == failed['variant2']]
|
||||
|
|
@ -145,9 +179,10 @@ def visualize_results(audio_group='audio'):
|
|||
if __name__ == '__main__':
|
||||
# evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words.gpu',weights ='siamese_speech_model-58-epoch-0.00-acc.h5')
|
||||
# evaluate_siamese('./outputs/story_words.test.tfrecords',audio_group='story_words',weights ='siamese_speech_model-675-epoch-0.00-acc.h5')
|
||||
evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5')
|
||||
# evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5')
|
||||
# play_results('story_words')
|
||||
visualize_results('story_words.gpu')
|
||||
inspect_tfrecord('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases')
|
||||
# visualize_results('story_words.gpu')
|
||||
# test_with('rand_edu')
|
||||
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
|
||||
# print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))
|
||||
|
|
|
|||
Loading…
Reference in New Issue