diff --git a/speech_test.py b/speech_test.py index 95cc5da..32b330c 100644 --- a/speech_test.py +++ b/speech_test.py @@ -103,6 +103,38 @@ def evaluate_siamese(records_file,audio_group='audio',weights = 'siamese_speech_ "expected","predicted","success"]) result_data.to_csv('./outputs/' + audio_group + '.results.csv') +def inspect_tfrecord(records_file,audio_group='audio'): + record_iterator,records_count = record_generator_count(records_file) + all_results = [] + for (i,string_record) in tqdm(enumerate(record_iterator),total=records_count): + # string_record = next(record_iterator) + example = tf.train.Example() + example.ParseFromString(string_record) + spec_n1 = example.features.feature['spec_n1'].int64_list.value[0] + spec_n2 = example.features.feature['spec_n2'].int64_list.value[0] + word = example.features.feature['word'].bytes_list.value[0].decode() + phoneme1 = example.features.feature['phoneme1'].bytes_list.value[0].decode() + phoneme2 = example.features.feature['phoneme2'].bytes_list.value[0].decode() + voice1 = example.features.feature['voice1'].bytes_list.value[0].decode() + voice2 = example.features.feature['voice2'].bytes_list.value[0].decode() + language = example.features.feature['language'].bytes_list.value[0].decode() + rate1 = example.features.feature['rate1'].int64_list.value[0] + rate2 = example.features.feature['rate2'].int64_list.value[0] + variant1 = example.features.feature['variant1'].bytes_list.value[0].decode() + variant2 = example.features.feature['variant2'].bytes_list.value[0].decode() + file1 = example.features.feature['file1'].bytes_list.value[0].decode() + file2 = example.features.feature['file2'].bytes_list.value[0].decode() + output_arr = np.asarray([example.features.feature['output'].int64_list.value]) + expected = output_arr[0] + result = {"phoneme1":phoneme1,"phoneme2":phoneme2,"voice1":voice1 + ,"voice2":voice2,"rate1":rate1,"rate2":rate2,"spec_n1":spec_n1 + ,"spec_n2":spec_n2,"variant1":variant1,"variant2":variant2 + ,"file1":file1,"file2":file2,"expected":expected[0]} + all_results.append(result) + result_data = pd.DataFrame(all_results,columns=["phoneme1","phoneme2" + ,"voice1","voice2","rate1","rate2","spec_n1","spec_n2","variant1","variant2","file1","file2", + "expected"]) + result_data.to_csv('./outputs/' + audio_group + '.pairs.csv') def play_results(audio_group='audio'): result_data = pd.read_csv('./outputs/' + audio_group + '.results.csv') @@ -133,8 +165,10 @@ def play_results(audio_group='audio'): def visualize_results(audio_group='audio'): # %matplotlib inline audio_group = 'story_phrases' + source = pd.read_csv('./outputs/'+audio_group+'.pairs.csv',index_col=0) + source.groupby(['voice1','voice2']).size() result = pd.read_csv('./outputs/' + audio_group + '.results.csv',index_col=0) - result.groupby('success').size().plot(kind='bar') + # result.groupby('success').size().plot(kind='bar') result.describe(include=['object']) failed = result[result['success'] == False] same_failed = failed[failed['variant1'] == failed['variant2']] @@ -145,9 +179,10 @@ def visualize_results(audio_group='audio'): if __name__ == '__main__': # evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words.gpu',weights ='siamese_speech_model-58-epoch-0.00-acc.h5') # evaluate_siamese('./outputs/story_words.test.tfrecords',audio_group='story_words',weights ='siamese_speech_model-675-epoch-0.00-acc.h5') - evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5') + # evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5') # play_results('story_words') - visualize_results('story_words.gpu') + inspect_tfrecord('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases') + # visualize_results('story_words.gpu') # test_with('rand_edu') # sunflower_data,sunflower_result = get_word_pairs_data('sweater',15) # print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))