Malar Kannan 2017-11-14 21:59:15 +05:30
commit 036667d1c7
11 changed files with 759 additions and 425 deletions

View File

@ -1,25 +0,0 @@
import multiprocessing
import pandas as pd
import numpy as np
def _apply_df(args):
df, func, num, kwargs = args
return num, df.apply(func, **kwargs)
def apply_by_multiprocessing(df,func,**kwargs):
cores = multiprocessing.cpu_count()
workers=kwargs.pop('workers') if 'workers' in kwargs else cores
pool = multiprocessing.Pool(processes=workers)
result = pool.map(_apply_df, [(d, func, i, kwargs) for i,d in enumerate(np.array_split(df, workers))])
pool.close()
result=sorted(result,key=lambda x:x[0])
return pd.concat([i[1] for i in result])
def square(x):
return x**x
if __name__ == '__main__':
df = pd.DataFrame({'a':range(10), 'b':range(10)})
apply_by_multiprocessing(df, square, axis=1, workers=4)

View File

@ -1,42 +0,0 @@
import pyaudio
import numpy as np
# from matplotlib import pyplot as plt
from spectro_gen import plot_stft, generate_spec_frec
def record_spectrogram(n_sec, plot=False, playback=False):
SAMPLE_RATE = 22050
N_CHANNELS = 2
N_SEC = n_sec
CHUNKSIZE = int(SAMPLE_RATE * N_SEC / N_CHANNELS) # fixed chunk size
# show_record_prompt()
input('Press [Enter] to start recording sample... ')
p_inp = pyaudio.PyAudio()
stream = p_inp.open(
format=pyaudio.paFloat32,
channels=N_CHANNELS,
rate=SAMPLE_RATE,
input=True,
frames_per_buffer=CHUNKSIZE)
data = stream.read(CHUNKSIZE)
numpydata = np.frombuffer(data, dtype=np.float32)
multi_channel = np.abs(np.reshape(numpydata, (-1, 2))).mean(axis=1)
one_channel = np.asarray([multi_channel, -1 * multi_channel]).T.reshape(-1)
mean_channel_data = one_channel.tobytes()
stream.stop_stream()
stream.close()
p_inp.terminate()
if plot:
plot_stft(one_channel, SAMPLE_RATE)
if playback:
p_oup = pyaudio.PyAudio()
stream = p_oup.open(
format=pyaudio.paFloat32,
channels=2,
rate=SAMPLE_RATE,
output=True)
stream.write(mean_channel_data)
stream.close()
p_oup.terminate()
ims, _ = generate_spec_frec(one_channel, SAMPLE_RATE)
return ims

76
requirements-linux.txt Normal file
View File

@ -0,0 +1,76 @@
bleach==1.5.0
click==6.7
cloudpickle==0.4.1
cycler==0.10.0
dask==0.15.4
decorator==4.1.2
distributed==1.19.3
entrypoints==0.2.3
enum34==1.1.6
futures==3.1.1
h5py==2.7.1
HeapDict==1.0.0
html5lib==0.9999999
ipykernel==4.6.1
ipython==6.2.1
ipython-genutils==0.2.0
ipywidgets==7.0.3
jedi==0.11.0
Jinja2==2.9.6
jsonschema==2.6.0
jupyter==1.0.0
jupyter-client==5.1.0
jupyter-console==5.2.0
jupyter-core==4.3.0
Keras==2.0.8
locket==0.2.0
Markdown==2.6.9
MarkupSafe==1.0
matplotlib==2.1.0
mistune==0.7.4
msgpack-python==0.4.8
nbconvert==5.3.1
nbformat==4.4.0
notebook==5.2.0
numexpr==2.6.4
numpy==1.13.3
pandas==0.20.3
pandocfilters==1.4.2
parso==0.1.0
partd==0.3.8
pexpect==4.2.1
pickleshare==0.7.4
progressbar2==3.34.3
prompt-toolkit==1.0.15
protobuf==3.4.0
psutil==5.4.0
ptyprocess==0.5.2
PyAudio==0.2.11
Pygments==2.2.0
pyparsing==2.2.0
pysndfile==1.0.0
python-dateutil==2.6.1
python-utils==2.2.0
pytz==2017.2
PyYAML==3.12
pyzmq==16.0.2
qtconsole==4.3.1
scikit-learn==0.19.0
scipy==0.19.1
simplegeneric==0.8.1
six==1.11.0
sortedcontainers==1.5.7
tables==3.4.2
tblib==1.3.2
tensorflow==1.3.0
tensorflow-tensorboard==0.4.0rc1
terminado==0.6
testpath==0.3.1
toolz==0.8.2
tornado==4.5.2
tqdm==4.19.4
traitlets==4.3.2
wcwidth==0.1.7
Werkzeug==0.12.2
widgetsnbextension==3.0.6
zict==0.1.3

View File

@ -1,220 +1,252 @@
import pandas as pd
from pandas_parallel import apply_by_multiprocessing
from speech_tools import apply_by_multiprocessing,threadsafe_iter
# import dask as dd
# import dask.dataframe as ddf
import tensorflow as tf
from tensorflow.python.ops import data_flow_ops
import numpy as np
from spectro_gen import generate_aiff_spectrogram
from speech_spectrum import generate_aiff_spectrogram
from sklearn.model_selection import train_test_split
import itertools
import os
import random
import csv
import gc
import pickle
from tqdm import tqdm
def get_siamese_pairs(groupF1, groupF2):
group1 = [r for (i, r) in groupF1.iterrows()]
group2 = [r for (i, r) in groupF2.iterrows()]
diff = [(g1, g2) for g2 in group2 for g1 in group1]
same = [i for i in itertools.combinations(group1, 2)
] + [i for i in itertools.combinations(group2, 2)]
random.shuffle(same)
random.shuffle(diff)
# return (random.sample(same,10), random.sample(diff,10))
return same[:10],diff[:10]
def siamese_pairs(rightGroup, wrongGroup):
group1 = [r for (i, r) in rightGroup.iterrows()]
group2 = [r for (i, r) in wrongGroup.iterrows()]
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]
rightRightPairs = [i for i in itertools.combinations(group1, 2)]
random.shuffle(rightWrongPairs)
random.shuffle(rightRightPairs)
# return (random.sample(same,10), random.sample(diff,10))
return rightRightPairs[:10],rightWrongPairs[:10]
rightRightPairs = [i for i in itertools.combinations(group1, 2)]#+[i for i in itertools.combinations(group2, 2)]
# random.shuffle(rightWrongPairs)
# random.shuffle(rightRightPairs)
# return rightRightPairs[:10],rightWrongPairs[:10]
return rightRightPairs[:32],rightWrongPairs[:32]
def append_zeros(spgr, max_samples):
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
'median')
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def create_spectrogram_tfrecords(audio_group='audio',sample_count=0,train_test_ratio=0.1):
'''
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
'''
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv',index_col=0)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
n_records,n_spec,n_features = 0,0,0
def write_samples(wg,sample_name):
word_group_prog = tqdm(wg,desc='Computing spectrogram')
record_file = './outputs/{}.{}.tfrecords'.format(audio_group,sample_name)
writer = tf.python_io.TFRecordWriter(record_file)
for (w, word_group) in word_group_prog:
word_group_prog.set_postfix(word=w,sample_name=sample_name)
g = word_group.reset_index()
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
sample_right = g.loc[g['variant'] == 'low']
sample_wrong = g.loc[g['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
group_prog = tqdm(group,desc='Writing Spectrogram')
for sample1,sample2 in group_prog:
same = sample1['variant'] == sample2['variant']
phon_same = sample1['phonemes'] == sample2['phonemes']
voice_diff = sample1['voice'] != sample2['voice']
if not same and phon_same:
continue
if same and not voice_diff:
continue
group_prog.set_postfix(output=output
,var1=sample1['variant']
,var2=sample2['variant'])
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
nonlocal n_spec,n_records,n_features
n_spec = max([n_spec,spec_n1,spec_n2])
n_features = spec_w1
n_records+=1
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
group_prog.close()
word_group_prog.close()
writer.close()
word_groups = [i for i in audio_samples.groupby('word')]
wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio)
write_samples(tr_audio_samples,'train')
write_samples(te_audio_samples,'test')
const_file = os.path.join('./outputs',audio_group+'.constants')
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
def padd_zeros(spgr, max_samples):
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
'constant')
def to_onehot(a,class_count=2):
# >>> a = np.array([1, 0, 3])
a_row_n = a.shape[0]
b = np.zeros((a_row_n, class_count))
b[np.arange(a_row_n), a] = 1
return b
def reservoir_sample(iterable, k):
it = iter(iterable)
if not (k > 0):
raise ValueError("sample size must be positive")
def create_pair(l, r, max_samples):
l_sample = padd_zeros(l, max_samples)
r_sample = padd_zeros(r, max_samples)
return np.asarray([l_sample, r_sample])
sample = list(itertools.islice(it, k)) # fill the reservoir
random.shuffle(sample) # if number of items less then *k* then
# return all items in random order.
for i, item in enumerate(it, start=k+1):
j = random.randrange(i) # random [0..i)
if j < k:
sample[j] = item # replace item with gradually decreasing probability
return sample
def create_test_pair(l, r, max_samples):
l_sample = append_zeros(l, max_samples)
r_sample = append_zeros(r, max_samples)
return np.asarray([[l_sample, r_sample]])
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size=0):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
input_pairs = []
output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('reading tfrecords({}-train)...'.format(audio_group))
# @threadsafe_iter
def record_generator():
input_data = []
output_data = []
while True:
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
#tqdm(enumerate(record_iterator),total=n_records)
for (i,string_record) in enumerate(record_iterator):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data.append(np.asarray([p_spec1,p_spec2]))
output = example.features.feature['output'].int64_list.value
output_data.append(np.asarray(output))
if len(input_data) == batch_size:
input_arr = np.asarray(input_data)
output_arr = np.asarray(output_data)
yield ([input_arr[:, 0], input_arr[:, 1]],output_arr)
input_data = []
output_data = []
def create_X(sp, max_samples):
return create_pair(sp[0]['spectrogram'], sp[1]['spectrogram'], max_samples)
# Read test in one-shot
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
te_n_records = len([i for i in te_re_iterator])
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
print('reading tfrecords({}-test)...'.format(audio_group))
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
input_data = np.zeros((test_size,2,n_spec,n_features))
output_data = np.zeros((test_size,2))
random_samples = enumerate(reservoir_sample(te_re_iterator,test_size))
for (i,string_record) in tqdm(random_samples,total=test_size):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data[i] = np.asarray([p_spec1,p_spec2])
output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output)
return record_generator,input_data,output_data,n_spec,n_features,n_records
# def get_word_pairs_data(word, max_samples):
# audio_samples = pd.read_csv(
# './outputs/audio.csv',
# names=['word', 'voice', 'rate', 'variant', 'file'])
# audio_samples = audio_samples.loc[audio_samples['word'] ==
# word].reset_index(drop=True)
# audio_samples.loc[:, 'spectrogram'] = audio_samples.loc[:, 'file'].apply(
# lambda x: 'outputs/audio/' + x).apply(generate_aiff_spectrogram)
# max_samples = audio_samples['spectrogram'].apply(
# lambda x: x.shape[0]).max()
# same_data, diff_data = [], []
# for (w, g) in audio_samples.groupby(audio_samples['word']):
# sample_norm = g.loc[audio_samples['variant'] == 'normal']
# sample_phon = g.loc[audio_samples['variant'] == 'phoneme']
# same, diff = get_siamese_pairs(sample_norm, sample_phon)
# same_data.extend([create_X(s, max_samples) for s in same])
# diff_data.extend([create_X(d, max_samples) for d in diff])
# Y = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
# X = np.asarray(same_data + diff_data)
# # tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
# return (X, Y)
def audio_samples_word_count(audio_group='audio'):
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv')
return len(audio_samples.groupby(audio_samples['word']))
def record_generator_count(records_file):
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
count = len([i for i in record_iterator])
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
return record_iterator,count
def create_spectrogram_data(audio_group='audio'):
def fix_csv(audio_group='audio'):
audio_csv_lines = open('./outputs/' + audio_group + '.csv.orig','r').readlines()
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
proper_rows = [i for i in audio_csv_data if len(i) == 7]
with open('./outputs/' + audio_group + '.csv','w') as fixed_csv:
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
fixed_csv_w.writerows(proper_rows)
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
, quoting=csv.QUOTE_NONE)
# audio_samples = audio_samples.loc[audio_samples['word'] ==
# 'sunflowers'].reset_index(drop=True)
audio_samples['file_paths'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_paths'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
audio_samples['spectrogram'] = apply_by_multiprocessing(audio_samples['file_paths'],generate_aiff_spectrogram)#.apply(
audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
def create_spectrogram_tfrecords(audio_group='audio'):
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
, quoting=csv.QUOTE_NONE)
# audio_samples = audio_samples.loc[audio_samples['word'] ==
# 'sunflowers'].reset_index(drop=True)
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'])
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
# audio_samples = audio_samples[:100]
for (w, word_group) in audio_samples.groupby(audio_samples['word']):
g = word_group.reset_index()
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
sample_right = g.loc[audio_samples['variant'] == 'low']
sample_wrong = g.loc[audio_samples['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
for sample1,sample2 in group:
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
writer.close()
def create_tagged_data(audio_samples):
same_data, diff_data = [], []
for (w, g) in audio_samples.groupby(audio_samples['word']):
# sample_norm = g.loc[audio_samples['variant'] == 'low']
# sample_phon = g.loc[audio_samples['variant'] == 'medium']
sample_norm = g.loc[audio_samples['variant'] == 'normal']
sample_phon = g.loc[audio_samples['variant'] == 'phoneme']
same, diff = get_siamese_pairs(sample_norm, sample_phon)
same_data.extend([create_X(s) for s in same])
diff_data.extend([create_X(d) for d in diff])
print('creating all speech pairs')
Y_f = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
Y = to_onehot(Y_f.astype(np.int8))
print('casting as array speech pairs')
X = np.asarray(same_data + diff_data)
return X,Y
def create_speech_pairs_data(audio_group='audio'):
audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
# sample_size = audio_samples['spectrogram'][0].shape[1]
tr_audio_samples,te_audio_samples = train_test_split(audio_samples, test_size=0.1)
def save_samples_for(sample_name,samples):
print('generating {} siamese speech pairs'.format(sample_name))
X,Y = create_tagged_data(samples)
print('shuffling array speech pairs')
rng_state = np.random.get_state()
np.random.shuffle(X)
np.random.set_state(rng_state)
np.random.shuffle(Y)
print('pickling X/Y')
np.save('outputs/{}-train-X.npy'.format(audio_group), X)
np.save('outputs/{}-train-Y.npy'.format(audio_group), Y)
save_samples_for('train',tr_audio_samples)
save_samples_for('test',te_audio_samples)
def speech_data(audio_group='audio'):
X = np.load('outputs/{}-X.npy'.format(audio_group)) / 255.0
Y = np.load('outputs/{}-Y.npy'.format(audio_group))
return (X,Y)
def speech_model_data():
tr_pairs = np.load('outputs/tr_pairs.npy') / 255.0
te_pairs = np.load('outputs/te_pairs.npy') / 255.0
tr_pairs[tr_pairs < 0] = 0
te_pairs[te_pairs < 0] = 0
tr_y = np.load('outputs/tr_y.npy')
te_y = np.load('outputs/te_y.npy')
return tr_pairs, te_pairs, tr_y, te_y
audio_samples = audio_samples[audio_samples['file_exists'] == True]
audio_samples = audio_samples.drop(['file_path','file_exists'],axis=1).reset_index(drop=True)
audio_samples.to_csv('./outputs/' + audio_group + '.csv')
def convert_old_audio():
audio_samples = pd.read_csv( './outputs/audio.csv.old'
, names=['word', 'voice', 'rate', 'variant', 'file'])
audio_samples['phonemes'] = 'unknown'
audio_samples['language'] = 'en-US'
audio_samples.loc[audio_samples['variant'] == 'normal','variant'] = 'low'
audio_samples.loc[audio_samples['variant'] == 'phoneme','variant'] = 'medium'
audio_samples = audio_samples[['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']]
audio_samples.to_csv('./outputs/audio_new.csv',index=False,header=False)
if __name__ == '__main__':
# sunflower_pairs_data()
# create_spectrogram_data()
# create_spectrogram_data('story_words')
create_spectrogram_tfrecords('story_words')
# create_spectrogram_tfrecords('story_words')
# create_spectrogram_tfrecords('story_words_test')
# read_siamese_tfrecords('story_all')
# read_siamese_tfrecords('story_words_test')
# padd_zeros_siamese_tfrecords('story_words')
# fix_csv('story_words')
# pickle_constants('story_words')
# create_spectrogram_tfrecords('audio',sample_count=100)
# create_spectrogram_tfrecords('story_all',sample_count=25)
# fix_csv('story_words_test')
create_spectrogram_tfrecords('story_words_test',sample_count=100,train_test_ratio=0.0)
# create_spectrogram_tfrecords('audio',sample_count=50)
# read_siamese_tfrecords_generator('audio')
# padd_zeros_siamese_tfrecords('audio')
# create_padded_spectrogram()
# create_speech_pairs_data()
# print(speech_model_data())

164
speech_model.py Normal file
View File

@ -0,0 +1,164 @@
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
# from speech_data import speech_model_data
from speech_data import read_siamese_tfrecords_generator
from keras.models import Model,load_model,model_from_yaml
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
from keras.losses import categorical_crossentropy
# from keras.losses import binary_crossentropy
from keras.utils import to_categorical
# from keras.utils.np_utils import to_categorical
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
from speech_tools import create_dir
# def euclidean_distance(vects):
# x, y = vects
# return K.sqrt(
# K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
#
#
# def eucl_dist_output_shape(shapes):
# shape1, shape2 = shapes
# return (shape1[0], 1)
#
#
# def contrastive_loss(y_true, y_pred):
# '''Contrastive loss from Hadsell-et-al.'06
# http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
# '''
# return K.mean(y_true * K.square(y_pred) +
# (1 - y_true) * K.square(K.maximum(1 - y_pred, 0)))
def create_base_rnn_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
inp = Input(shape=input_dim)
# ls0 = LSTM(512, return_sequences=True)(inp)
ls1 = LSTM(256, return_sequences=True)(inp)
ls2 = LSTM(128, return_sequences=True)(ls1)
# ls3 = LSTM(32, return_sequences=True)(ls2)
ls4 = LSTM(64)(ls2)
# d1 = Dense(128, activation='relu')(ls4)
d2 = Dense(64, activation='relu')(ls4)
return Model(inp, ls4)
def compute_accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
pred = y_pred.ravel() > 0.5
return np.mean(pred == y_true)
def accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype)))
def dense_classifier(processed):
conc_proc = Concatenate()(processed)
d1 = Dense(64, activation='relu')(conc_proc)
# dr1 = Dropout(0.1)(d1)
# d2 = Dense(128, activation='relu')(d1)
d3 = Dense(8, activation='relu')(d1)
# dr2 = Dropout(0.1)(d2)
return Dense(2, activation='softmax')(d3)
def siamese_model(input_dim):
# input_dim = (15, 1654)
base_network = create_base_rnn_network(input_dim)
input_a = Input(shape=input_dim)
input_b = Input(shape=input_dim)
processed_a = base_network(input_a)
processed_b = base_network(input_b)
final_output = dense_classifier([processed_a,processed_b])
model = Model([input_a, input_b], final_output)
# distance = Lambda(
# euclidean_distance,
# output_shape=eucl_dist_output_shape)([processed_a, processed_b])
# model = Model([input_a, input_b], distance)
return model
def write_model_arch(mod,mod_file):
model_f = open(mod_file,'w')
model_f.write(mod.to_yaml())
model_f.close()
def load_model_arch(mod_file):
model_f = open(mod_file,'r')
mod = model_from_yaml(model_f.read())
model_f.close()
return mod
def train_siamese(audio_group = 'audio'):
# the data, shuffled and split between train and test sets
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
batch_size = 128
model_dir = './models/'+audio_group
create_dir(model_dir)
log_dir = './logs/'+audio_group
create_dir(log_dir)
tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size=batch_size,test_size=batch_size)
tr_gen = tr_gen_fn()
# tr_y = to_categorical(tr_y_e, num_classes=2)
# te_y = to_categorical(te_y_e, num_classes=2)
input_dim = (n_step, n_features)
model = siamese_model(input_dim)
tb_cb = TensorBoard(
log_dir=log_dir,
histogram_freq=1,
batch_size=32,
write_graph=True,
write_grads=True,
write_images=True,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None)
cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5'
cp_cb = ModelCheckpoint(
cp_file_fmt,
monitor='val_loss',
verbose=0,
save_best_only=True,
save_weights_only=True,
mode='auto',
period=1)
# train
rms = RMSprop()#lr=0.001
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml')
# model.fit(
# [tr_pairs[:, 0], tr_pairs[:, 1]],
# tr_y,
# batch_size=128,
# epochs=100,
# validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),
# callbacks=[tb_cb, cp_cb])
model.fit_generator(tr_gen
,epochs=1000
,steps_per_epoch=n_records//batch_size
,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
,use_multiprocessing=True, workers=1
,callbacks=[tb_cb, cp_cb])
model.save(model_dir+'/siamese_speech_model-final.h5')
# compute final accuracy on training and test sets
# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
# tr_acc = compute_accuracy(tr_y, y_pred)
# print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
te_acc = compute_accuracy(te_y, y_pred)
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
if __name__ == '__main__':
train_siamese('story_words')
# train_siamese('audio')

View File

@ -3,6 +3,7 @@ from AppKit import NSSpeechSynthesizer, NSSpeechInputModeProperty
from AppKit import NSSpeechModePhoneme
from Foundation import NSURL
import json
import csv
import random
import os
import re
@ -11,6 +12,7 @@ import time
import progressbar
from generate_similar import similar_phoneme_phrase,similar_phrase
from speech_tools import format_filename
OUTPUT_NAME = 'story_words_test'
dest_dir = os.path.abspath('.') + '/outputs/' + OUTPUT_NAME + '/'
@ -39,7 +41,10 @@ def create_dir(direc):
def dest_filename(w, v, r, t):
return '{}-{}-{}-{}-{}.aiff'.format(w, v, r, t, str(random.randint(0, 10000)))
rand_no = str(random.randint(0, 10000))
fname = '{}-{}-{}-{}-{}.aiff'.format(w, v, r, t, rand_no)
sanitized = format_filename(fname)
return sanitized
def dest_path(v, r, n):
@ -81,6 +86,11 @@ class SynthFile(object):
return ','.join([str(c) for c in cols])+'\n'
def get_values(self):
cols = [self.word, self.phoneme, self.voice,
self.voice_lang, self.rate, self.variant,
self.filename]
return [str(c) for c in cols]
class SynthVariant(object):
"""docstring for SynthVariant."""
@ -191,22 +201,11 @@ def synth_generator():
print("It took {} to synthsize all variants.".format(time_str))
return synth_for_words
def write_synths(synth_list, fname, csv=False):
f = open(fname, 'w')
if csv:
for s in synth_list:
f.write(s.get_csv())
else:
json.dump([s.get_json() for s in synth_list], f)
f.close()
def synth_logger(fname, csv=False):
f = open(fname, 'w')
s_csv_w = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
def csv_writer(s):
f.write(s.get_csv())
s_csv_w.writerow(s.get_values())
synth_list = []
def json_writer(s):

View File

@ -1,135 +0,0 @@
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from speech_data import speech_model_data
from keras.models import Model,load_model
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
from keras.losses import categorical_crossentropy
# from keras.losses import binary_crossentropy
from keras.utils import to_categorical
# from keras.utils.np_utils import to_categorical
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
def euclidean_distance(vects):
x, y = vects
return K.sqrt(
K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
def contrastive_loss(y_true, y_pred):
'''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
'''
return K.mean(y_true * K.square(y_pred) +
(1 - y_true) * K.square(K.maximum(1 - y_pred, 0)))
def create_base_rnn_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
inp = Input(shape=input_dim)
ls1 = LSTM(256, return_sequences=True)(inp)
ls2 = LSTM(128, return_sequences=True)(ls1)
# ls3 = LSTM(32, return_sequences=True)(ls2)
ls4 = LSTM(64)(ls2)
return Model(inp, ls4)
def compute_accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
pred = y_pred.ravel() < 0.5
return np.mean(pred == y_true)
def accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype)))
def dense_classifier(processed):
conc_proc = Concatenate()(processed)
d1 = Dense(16, activation='relu')(conc_proc)
# dr1 = Dropout(0.1)(d1)
d2 = Dense(8, activation='relu')(d1)
# dr2 = Dropout(0.1)(d2)
return Dense(2, activation='softmax')(d2)
def siamese_model(input_dim):
# input_dim = (15, 1654)
base_network = create_base_rnn_network(input_dim)
input_a = Input(shape=input_dim)
input_b = Input(shape=input_dim)
processed_a = base_network(input_a)
processed_b = base_network(input_b)
final_output = dense_classifier([processed_a,processed_b])
model = Model([input_a, input_b], final_output)
# distance = Lambda(
# euclidean_distance,
# output_shape=eucl_dist_output_shape)([processed_a, processed_b])
# model = Model([input_a, input_b], distance)
return model
def train_siamese():
# the data, shuffled and split between train and test sets
tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
tr_y = to_categorical(tr_y_e, num_classes=2)
te_y = to_categorical(te_y_e, num_classes=2)
input_dim = (tr_pairs.shape[2], tr_pairs.shape[3])
model = siamese_model(input_dim)
tb_cb = TensorBoard(
log_dir='./logs/siamese_logs',
histogram_freq=1,
batch_size=32,
write_graph=True,
write_grads=True,
write_images=True,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None)
cp_file_fmt = './models/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5'
cp_cb = ModelCheckpoint(
cp_file_fmt,
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=False,
mode='auto',
period=1)
# train
rms = RMSprop(lr=0.001)
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
model.fit(
[tr_pairs[:, 0], tr_pairs[:, 1]],
tr_y,
batch_size=128,
epochs=50,
validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),
callbacks=[tb_cb, cp_cb])
model.save('./models/siamese_speech_model-final.h5')
# compute final accuracy on training and test sets
y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
tr_acc = compute_accuracy(tr_y, y_pred)
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
te_acc = compute_accuracy(te_y, y_pred)
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
if __name__ == '__main__':
train_siamese()

View File

@ -13,6 +13,8 @@ from pysndfile import sndio as snd
from numpy.lib import stride_tricks
""" short time fourier transform of audio signal """
STFT_WINDOWS_MSEC = 20
STFT_WINDOW_OVERLAP = 1.0 / 3
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
@ -74,7 +76,7 @@ def logscale_spec(spec, sr=44100, factor=20.):
def generate_spec_frec(samples, samplerate):
# samplerate, samples = wav.read(audiopath)
# s = stft(samples, binsize)
s = stft(samples, samplerate * 150 // 1000, 1.0 / 3)
s = stft(samples, samplerate * STFT_WINDOWS_MSEC // 1000, STFT_WINDOW_OVERLAP)
sshow, freq = logscale_spec(s, factor=1.0, sr=samplerate)
ims = 20. * np.log10(np.abs(sshow) / 10e-6)
@ -141,8 +143,11 @@ def play_sunflower():
if __name__ == '__main__':
play_sunflower()
# plot_aiff_stft('./outputs/sunflowers-Alex-150-normal-589.aiff')
# play_sunflower()
plot_aiff_stft('./outputs/story_words/Agnes/150/chicken-Agnes-150-low-1077.aiff')
plot_aiff_stft('./outputs/story_words/Agnes/150/chicken-Agnes-150-medium-1762.aiff')
# spec = generate_aiff_spectrogram('./outputs/story_words/Agnes/150/chicken-Agnes-150-low-1077.aiff')
# print(spec.shape)
# plot_aiff_stft('./outputs/sunflowers-Alex-180-normal-4763.aiff')
# plot_aiff_stft('./outputs/sunflowers-Victoria-180-normal-870.aiff')
# plot_aiff_stft('./outputs/sunflowers-Fred-180-phoneme-9733.aiff')

138
speech_test.py Normal file
View File

@ -0,0 +1,138 @@
from speech_model import load_model_arch
from speech_tools import record_spectrogram, file_player
from speech_data import record_generator_count
# from importlib import reload
# import speech_data
# reload(speech_data)
import numpy as np
import pandas as pd
import os
import pickle
import tensorflow as tf
import csv
from tqdm import tqdm
from speech_data import padd_zeros
def predict_recording_with(m,sample_size=15):
spec1 = record_spectrogram(n_sec=1.4)
spec2 = record_spectrogram(n_sec=1.4)
inp = create_test_pair(spec1,spec2,sample_size)
return m.predict([inp[:, 0], inp[:, 1]])
def test_with(audio_group):
X,Y = speech_data(audio_group)
print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1))
print(Y.astype(np.int8))
def evaluate_siamese(records_file,audio_group='audio',weights = 'siamese_speech_model-final.h5'):
# audio_group='audio';model_file = 'siamese_speech_model-305-epoch-0.20-acc.h5'
# records_file = os.path.join('./outputs',eval_group+'.train.tfrecords')
const_file = os.path.join('./outputs',audio_group+'.constants')
arch_file='./models/'+audio_group+'/siamese_speech_model_arch.yaml'
weight_file='./models/'+audio_group+'/'+weights
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('evaluating {}...'.format(records_file))
model = load_model_arch(arch_file)
# model = siamese_model((n_spec, n_features))
model.load_weights(weight_file)
record_iterator,records_count = record_generator_count(records_file)
total,same_success,diff_success,skipped,same_failed,diff_failed = 0,0,0,0,0,0
all_results = []
for (i,string_record) in tqdm(enumerate(record_iterator),total=records_count):
# string_record = next(record_iterator)
total+=1
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
if n_spec < spec_n1 or n_spec < spec_n2:
skipped+=1
continue
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
word = example.features.feature['word'].bytes_list.value[0].decode()
phoneme1 = example.features.feature['phoneme1'].bytes_list.value[0].decode()
phoneme2 = example.features.feature['phoneme2'].bytes_list.value[0].decode()
voice1 = example.features.feature['voice1'].bytes_list.value[0].decode()
voice2 = example.features.feature['voice2'].bytes_list.value[0].decode()
language = example.features.feature['language'].bytes_list.value[0].decode()
rate1 = example.features.feature['rate1'].int64_list.value[0]
rate2 = example.features.feature['rate2'].int64_list.value[0]
variant1 = example.features.feature['variant1'].bytes_list.value[0].decode()
variant2 = example.features.feature['variant2'].bytes_list.value[0].decode()
file1 = example.features.feature['file1'].bytes_list.value[0].decode()
file2 = example.features.feature['file2'].bytes_list.value[0].decode()
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_arr = np.asarray([[p_spec1,p_spec2]])
output_arr = np.asarray([example.features.feature['output'].int64_list.value])
y_pred = model.predict([input_arr[:, 0], input_arr[:, 1]])
predicted = np.asarray(y_pred[0]>0.5).astype(output_arr.dtype)
expected = output_arr[0]
status = np.all(predicted == expected)
result = {"phoneme1":phoneme1,"phoneme2":phoneme2,"voice1":voice1
,"voice2":voice2,"rate1":rate1,"rate2":rate2
,"variant1":variant1,"variant2":variant2,"file1":file1
,"file2":file2,"expected":expected[0],"predicted":y_pred[0][0]
,"success":status}
all_results.append(result)
if status:
if variant1 == variant2:
same_success+=1
else:
diff_success+=1
continue
else:
if variant1 == variant2:
same_failed+=1
else:
diff_failed+=1
print('total-{},same_success-{},diff_success-{},skipped-{},same_failed-{},diff_failed-{}'.format(total,same_success,diff_success,skipped,same_failed,diff_failed))
success = same_success+diff_success
failure = same_failed+diff_failed
print('accuracy-{:.3f}'.format(success*100/(success+failure)))
print('same_accuracy-{:.3f}'.format(same_success*100/(same_success+same_failed)))
print('diff_accuracy-{:.3f}'.format(diff_success*100/(diff_success+diff_failed)))
result_data = pd.DataFrame(all_results,columns=["phoneme1","phoneme2"
,"voice1","voice2","rate1","rate2","variant1","variant2","file1","file2",
"expected","predicted","success"])
result_data.to_csv('./outputs/' + audio_group + '.results.csv')
def play_results(audio_group='audio'):
result_data = pd.read_csv('./outputs/' + audio_group + '.results.csv')
play_file,close_player = file_player()
quit = False
for (i,r) in result_data.iterrows():
if quit:
break
keys = ["phoneme1","phoneme2","voice1","voice2","rate1","rate2","variant1","variant2"]
row_vals = [str(r[k]) for k in keys]
h_str = '\t'.join(keys)
row_str = '\t'.join(row_vals)
while True:
print(h_str)
print(row_str)
play_file('./outputs/'+audio_group+'/'+r['file1'],True)
play_file('./outputs/'+audio_group+'/'+r['file2'],True)
a = input("press 'r/q/[Enter]' to replay/quit/continue:\t")
if a == 'r':
continue
if a == 'q':
quit = True
break
else:
break
close_player()
if __name__ == '__main__':
evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words',weights ='siamese_speech_model-712-epoch-0.00-acc.h5')
# evaluate_siamese('./outputs/story_words.test.tfrecords',audio_group='story_words',weights ='siamese_speech_model-675-epoch-0.00-acc.h5')
# play_results('story_words')
# test_with('rand_edu')
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
# print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))
# print(sunflower_result)

152
speech_tools.py Normal file
View File

@ -0,0 +1,152 @@
import os
import threading
import multiprocessing
import pandas as pd
import numpy as np
import pyaudio
from pysndfile import sndio as snd
# from matplotlib import pyplot as plt
from speech_spectrum import plot_stft, generate_spec_frec
SAMPLE_RATE = 22050
N_CHANNELS = 2
def file_player():
p_oup = pyaudio.PyAudio()
def play_file(audiopath,plot=False):
print('playing',audiopath)
samples, samplerate, form = snd.read(audiopath)
stream = p_oup.open(
format=pyaudio.paFloat32,
channels=2,
rate=samplerate,
output=True)
one_channel = np.asarray([samples, samples]).T.reshape(-1)
audio_data = one_channel.astype(np.float32).tobytes()
stream.write(audio_data)
stream.close()
if plot:
plot_stft(samples, SAMPLE_RATE)
def close_player():
p_oup.terminate()
return play_file,close_player
def record_spectrogram(n_sec, plot=False, playback=False):
# show_record_prompt()
N_SEC = n_sec
CHUNKSIZE = int(SAMPLE_RATE * N_SEC / N_CHANNELS) # fixed chunk size
input('Press [Enter] to start recording sample... ')
p_inp = pyaudio.PyAudio()
stream = p_inp.open(
format=pyaudio.paFloat32,
channels=N_CHANNELS,
rate=SAMPLE_RATE,
input=True,
frames_per_buffer=CHUNKSIZE)
data = stream.read(CHUNKSIZE)
numpydata = np.frombuffer(data, dtype=np.float32)
multi_channel = np.abs(np.reshape(numpydata, (-1, 2))).mean(axis=1)
one_channel = np.asarray([multi_channel, -1 * multi_channel]).T.reshape(-1)
mean_channel_data = one_channel.tobytes()
stream.stop_stream()
stream.close()
p_inp.terminate()
if plot:
plot_stft(one_channel, SAMPLE_RATE)
if playback:
p_oup = pyaudio.PyAudio()
stream = p_oup.open(
format=pyaudio.paFloat32,
channels=2,
rate=SAMPLE_RATE,
output=True)
stream.write(mean_channel_data)
stream.close()
p_oup.terminate()
ims, _ = generate_spec_frec(one_channel, SAMPLE_RATE)
return ims
def _apply_df(args):
df, func, num, kwargs = args
return num, df.apply(func, **kwargs)
def apply_by_multiprocessing(df,func,**kwargs):
cores = multiprocessing.cpu_count()
workers=kwargs.pop('workers') if 'workers' in kwargs else cores
pool = multiprocessing.Pool(processes=workers)
result = pool.map(_apply_df, [(d, func, i, kwargs) for i,d in enumerate(np.array_split(df, workers))])
pool.close()
result=sorted(result,key=lambda x:x[0])
return pd.concat([i[1] for i in result])
def square(x):
return x**x
if __name__ == '__main__':
df = pd.DataFrame({'a':range(10), 'b':range(10)})
apply_by_multiprocessing(df, square, axis=1, workers=4)
def rm_rf(d):
for path in (os.path.join(d,f) for f in os.listdir(d)):
if os.path.isdir(path):
rm_rf(path)
else:
os.unlink(path)
os.rmdir(d)
def create_dir(direc):
if not os.path.exists(direc):
os.makedirs(direc)
else:
rm_rf(direc)
create_dir(direc)
#################### Now make the data generator threadsafe ####################
class threadsafe_iter:
"""Takes an iterator/generator and makes it thread-safe by
serializing call to the `next` method of given iterator/generator.
"""
def __init__(self, it):
self.it = it
self.lock = threading.Lock()
def __iter__(self):
return self
def __next__(self): # Py3
with self.lock:
return next(self.it)
def next(self): # Py2
with self.lock:
return self.it.next()
def threadsafe_generator(f):
"""A decorator that takes a generator function and makes it thread-safe.
"""
def g(*a, **kw):
return threadsafe_iter(f(*a, **kw))
return g
def format_filename(s):
"""
Take a string and return a valid filename constructed from the string.
Uses a whitelist approach: any characters not present in valid_chars are
removed. Also spaces are replaced with underscores.
Note: this method may produce invalid filenames such as ``, `.` or `..`
When I use this method I prepend a date string like '2009_01_15_19_46_32_'
and append a file extension like '.txt', so I avoid the potential of using
an invalid filename.
"""
valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits)
filename = ''.join(c for c in s if c in valid_chars)
filename = filename.replace(' ','_') # I don't like spaces in filenames.
return filename

View File

@ -1,30 +0,0 @@
from speech_siamese import siamese_model
from record_mic_speech import record_spectrogram
from importlib import reload
# import speech_data
# reload(speech_data)
from speech_data import create_test_pair,get_word_pairs_data,speech_data
import numpy as np
model = siamese_model((15, 1654))
model.load_weights('./models/siamese_speech_model-final.h5')
def predict_recording_with(m,sample_size=15):
spec1 = record_spectrogram(n_sec=1.4)
spec2 = record_spectrogram(n_sec=1.4)
inp = create_test_pair(spec1,spec2,sample_size)
return m.predict([inp[:, 0], inp[:, 1]])
# while(True):
# print(predict_recording_with(model))
def test_with(audio_group):
X,Y = speech_data(audio_group)
print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1))
print(Y.astype(np.int8))
test_with('rand_edu')
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
# print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))
# print(sunflower_result)