implemented tts sementation generation code

master
Malar Kannan 2017-11-28 12:16:57 +05:30
parent 3d7542271d
commit 0345cc46ae
1 changed files with 187 additions and 33 deletions

View File

@ -3,63 +3,216 @@ from AppKit import *
from Foundation import NSURL
from PyObjCTools import AppHelper
from time import time
import os
import sys
import random
import json
import csv
import subprocess
from tqdm import tqdm
from speech_samplegen import SynthVariant, format_filename
from speech_tools import create_dir
apple_phonemes = [
'%', '@', 'AE', 'EY', 'AO', 'AX', 'IY', 'EH', 'IH', 'AY', 'IX', 'AA', 'UW',
'UH', 'UX', 'OW', 'AW', 'OY', 'b', 'C', 'd', 'D', 'f', 'g', 'h', 'J', 'k',
'l', 'm', 'n', 'N', 'p', 'r', 's', 'S', 't', 'T', 'v', 'w', 'y', 'z', 'Z'
]
len(apple_phonemes)
speech_phoneme_data = []
OUTPUT_NAME = 'test'
dest_dir = os.path.abspath('.') + '/outputs/' + OUTPUT_NAME + '/'
csv_dest_file = os.path.abspath('.') + '/outputs/' + OUTPUT_NAME + '.csv'
create_dir(dest_dir)
def cli_gen_audio(speech_cmd, out_path):
subprocess.call(
['say', '-o', out_path, "'" + speech_cmd + "'"])
class SpeechDelegate (NSObject):
def speechSynthesizer_willSpeakWord_ofString_(self, sender, word, text):
'''Called automatically when the application has launched'''
print("Speaking word {} in sentence {}".format(word,text))
# print("Speaking word {} in sentence {}".format(word,text))
self.wordWillSpeak()
def speechSynthesizer_willSpeakPhoneme_(self,sender,phoneme):
def speechSynthesizer_willSpeakPhoneme_(self, sender, phoneme):
phon_ch = apple_phonemes[phoneme]
# print('first',speech_phoneme_data)
# prev_time = speech_phoneme_data[-1][1]
# print('prev_time',prev_time)
speech_phoneme_data.append((phon_ch,time()))
print("phoneme boundary for {} time {}".format(phon_ch,time()))
# NSApp().terminate_(self)
self.phonemeWillSpeak(phon_ch)
def speechSynthesizer_didFinishSpeaking_(self,synth,didFinishSpeaking):
speech_phoneme_data.append(('%',time()))
print("finished speaking time {}".format(time()))
diff_time = []
for i in range(len(speech_phoneme_data)-1):
dur = speech_phoneme_data[i+1][1] - speech_phoneme_data[i][1]
diff_time.append((speech_phoneme_data[i][0],dur))
print(diff_time)
def speechSynthesizer_didFinishSpeaking_(self, synth, didFinishSpeaking):
if didFinishSpeaking:
self.completeCB()
def setC_W_Ph_(self, completed, word, phoneme):
self.completeCB = completed
self.wordWillSpeak = word
self.phonemeWillSpeak = phoneme
# del SpeechDelegate
class Delegate (NSObject):
def applicationDidFinishLaunching_(self, aNotification):
'''Called automatically when the application has launched'''
print("Window, World!")
print("App Launched!")
generate_audio()
def windowWillClose_(self, aNotification):
'''Called automatically when the window is closed'''
print("Window has been closed")
# Terminate the application
NSApp().terminate_(self)
class PhonemeTiming(object):
"""docstring for PhonemeTiming."""
def __init__(self, phon, start):
super(PhonemeTiming, self).__init__()
self.phoneme = phon
self.start = start
self.fraction = 0
self.duration = None
self.end = None
def is_audible(self):
return self.phoneme not in ['%', '~']
def tune(self):
if self.is_audible():
dur_ms = int(self.duration * 1000)
return '{} {{D {}}}'.format(self.phoneme, dur_ms)
else:
return '~'
def __repr__(self):
return '[{}]({:0.4f})'.format(self.phoneme, self.fraction)
@staticmethod
def to_tune(phone_ts):
tune_list = ['[[inpt TUNE]]']
for ph in phone_ts:
tune_list.append(ph.tune())
tune_list.append('[[inpt TEXT]]')
return '\n'.join(tune_list)
class SegData(object):
"""docstring for SegData."""
def __init__(self, text, filename):
super(SegData, self).__init__()
self.text = text
self.tune = ''
self.filename = filename
self.segments = []
def csv_rows(self):
result = []
s_tim = self.segments[0].start
for i in range(len(self.segments) - 1):
cs = self.segments[i]
# if cs.is_audible():
ns = self.segments[i + 1]
row = [self.text, self.filename, cs.phoneme, ns.phoneme,
(cs.start - s_tim) * 1000, (cs.end - s_tim) * 1000]
result.append(row)
return result
class SynthesizerQueue(object):
"""docstring for SynthesizerQueue."""
def __init__(self):
super(SynthesizerQueue, self).__init__()
self.synth = NSSpeechSynthesizer.alloc().init()
self.didComplete = None
q_delg = SpeechDelegate.alloc().init()
self.synth.setDelegate_(q_delg)
def synth_complete():
end_time = time()
for i in range(len(self.phoneme_timing)):
if i == len(self.phoneme_timing) - 1:
self.phoneme_timing[i].duration = end_time - \
self.phoneme_timing[i].start
self.phoneme_timing[i].end = end_time
else:
self.phoneme_timing[i].duration = self.phoneme_timing[i +
1].start - self.phoneme_timing[i].start
self.phoneme_timing[i].end = self.phoneme_timing[i + 1].start
total_time = sum(
[i.duration for i in self.phoneme_timing if i.is_audible()])
for ph in self.phoneme_timing:
if ph.is_audible():
ph.fraction = ph.duration / total_time
if self.didComplete:
self.data.segments = self.phoneme_timing
self.data.tune = PhonemeTiming.to_tune(self.phoneme_timing)
self.didComplete(self.data)
def will_speak_phoneme(phon):
phtm = PhonemeTiming(phon, time())
self.phoneme_timing.append(phtm)
def will_speak_word():
pass
# coz it comes after the first phoneme of the word is started
# phtm = PhonemeTiming('~', time())
# self.phoneme_timing.append(phtm)
q_delg.setC_W_Ph_(synth_complete, will_speak_word, will_speak_phoneme)
def queueTask(self, text):
rand_no = str(random.randint(0, 10000))
fname = '{}-{}.aiff'.format(text, rand_no)
sanitized = format_filename(fname)
dest_file = dest_dir + sanitized
cli_gen_audio(text, dest_file)
self.phoneme_timing = []
self.data = SegData(text, sanitized)
self.synth.startSpeakingString_(text)
def story_texts():
# story_file = './inputs/all_stories_hs.json'
story_file = './inputs/all_stories.json'
stories_data = json.load(open(story_file))
# text_list_dup = [t[0] for i in stories_data.values() for t in i]
text_list_dup = [t for i in stories_data.values() for t in i]
text_list = sorted(list(set(text_list_dup)))
return text_list
def generate_audio():
synthQ = SynthesizerQueue()
phrases = random.sample(story_texts(), 5) # story_texts()
f = open(csv_dest_file, 'w')
s_csv_w = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
i = 0
p = tqdm(total=len(phrases))
def nextTask(seg_data=None):
nonlocal i
if i < len(phrases):
p.set_postfix(phrase=phrases[i])
p.update()
synthQ.queueTask(phrases[i])
i += 1
else:
p.close()
f.close()
dg = NSApplication.sharedApplication().delegate
print('App terminated.')
NSApp().terminate_(dg)
if seg_data:
s_csv_w.writerows(seg_data.csv_rows())
synthQ.didComplete = nextTask
nextTask()
def main():
speech_delg = SpeechDelegate.alloc().init()
speech_delg.speechSynthesizer_didFinishSpeaking_('t',True)
voices = NSSpeechSynthesizer.availableVoices()
identifier = voices[2]
time()
alex_voice = NSSpeechSynthesizer.alloc().initWithVoice_(identifier)
alex_voice.setDelegate_(speech_delg)
alex_voice.startSpeakingString_("This is a test for speech synthesis generation")
# Create a new application instance ...
a=NSApplication.sharedApplication()
a = NSApplication.sharedApplication()
# ... and create its delgate. Note the use of the
# Objective C constructors below, because Delegate
# is a subcalss of an Objective C class, NSObject
@ -69,5 +222,6 @@ def main():
AppHelper.runEventLoop()
if __name__ == '__main__':
main()