2017-11-30 09:19:55 +00:00
|
|
|
import random
|
2017-12-06 12:02:26 +00:00
|
|
|
import math
|
|
|
|
|
import pickle
|
2017-11-30 09:19:55 +00:00
|
|
|
from functools import reduce
|
2017-12-06 12:02:26 +00:00
|
|
|
from tqdm import tqdm
|
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import tensorflow as tf
|
2017-12-07 09:47:59 +00:00
|
|
|
import shutil
|
2017-12-06 12:02:26 +00:00
|
|
|
|
2017-11-30 09:19:55 +00:00
|
|
|
from speech_pitch import *
|
2017-12-07 09:47:59 +00:00
|
|
|
from speech_tools import reservoir_sample,padd_zeros
|
|
|
|
|
|
|
|
|
|
# import importlib
|
|
|
|
|
# import speech_tools
|
|
|
|
|
# importlib.reload(speech_tools)
|
2017-11-30 09:19:55 +00:00
|
|
|
# %matplotlib inline
|
2017-11-28 10:16:39 +00:00
|
|
|
|
2017-12-06 12:02:26 +00:00
|
|
|
SPEC_MAX_FREQUENCY = 8000
|
|
|
|
|
SPEC_WINDOW_SIZE = 0.03
|
|
|
|
|
|
2017-11-28 10:16:39 +00:00
|
|
|
def fix_csv(collection_name = 'test'):
|
2017-12-06 12:02:26 +00:00
|
|
|
seg_data = pd.read_csv('./outputs/segments/'+collection_name+'/index.csv',names=['phrase','filename'
|
2017-11-28 10:16:39 +00:00
|
|
|
,'start_phoneme','end_phoneme','start_time','end_time'])
|
2017-12-06 12:02:26 +00:00
|
|
|
seg_data.to_csv('./outputs/segments/'+collection_name+'/index.fixed.csv')
|
2017-11-28 10:16:39 +00:00
|
|
|
|
2017-11-30 09:19:55 +00:00
|
|
|
def pick_random_phrases(collection_name='test'):
|
|
|
|
|
collection_name = 'test'
|
|
|
|
|
seg_data = pd.read_csv('./outputs/'+collection_name+'.fixed.csv',index_col=0)
|
|
|
|
|
phrase_groups = random.sample([i for i in seg_data.groupby(['phrase'])],10)
|
|
|
|
|
result = []
|
|
|
|
|
for ph,g in phrase_groups:
|
|
|
|
|
result.append(ph)
|
|
|
|
|
pd.DataFrame(result,columns=['phrase']).to_csv('./outputs/'+collection_name+'.random.csv')
|
|
|
|
|
|
|
|
|
|
# pick_random_phrases()
|
2017-11-28 10:16:39 +00:00
|
|
|
|
2017-11-30 09:19:55 +00:00
|
|
|
def plot_random_phrases(collection_name = 'test'):
|
2017-12-06 12:02:26 +00:00
|
|
|
# collection_name = 'test'
|
2017-11-30 09:19:55 +00:00
|
|
|
rand_words = pd.read_csv('./outputs/'+collection_name+'.random.csv',index_col=0)
|
|
|
|
|
rand_w_list = rand_words['phrase'].tolist()
|
2017-11-28 10:16:39 +00:00
|
|
|
seg_data = pd.read_csv('./outputs/'+collection_name+'.fixed.csv',index_col=0)
|
2017-11-30 09:19:55 +00:00
|
|
|
result = (seg_data['phrase'] == rand_w_list[0])
|
|
|
|
|
for i in rand_w_list[1:]:
|
|
|
|
|
result |= (seg_data['phrase'] == i)
|
|
|
|
|
phrase_groups = [i for i in seg_data[result].groupby(['phrase'])]
|
|
|
|
|
self_files = ['a_wrong_turn-low1.aiff','great_pin-low1.aiff'
|
|
|
|
|
,'he_set_off_at_once_to_find_the_beast-low1.aiff'
|
|
|
|
|
,'hound-low1.aiff','noises-low1.aiff','po_burped-low1.aiff'
|
|
|
|
|
,'she_loves_the_roses-low1.aiff','the_busy_spider-low1.aiff'
|
|
|
|
|
,'the_rain_helped-low1.aiff','to_go_to_the_doctor-low1.aiff']
|
|
|
|
|
co_files = map(lambda x: './inputs/self/'+x,self_files)
|
|
|
|
|
|
|
|
|
|
for ((ph,g),s_f) in zip(phrase_groups,co_files):
|
|
|
|
|
# ph,g = phrase_groups[0]
|
|
|
|
|
file_path = './outputs/test/'+g.iloc[0]['filename']
|
|
|
|
|
phrase_sample = pm_snd(file_path)
|
|
|
|
|
self_sample = pm_snd(s_f)
|
|
|
|
|
player,closer = play_sound()
|
|
|
|
|
# rows = [i for i in g.iterrows()]
|
|
|
|
|
# random.shuffle(rows)
|
|
|
|
|
print(ph)
|
|
|
|
|
phon_stops = []
|
|
|
|
|
for (i,phon) in g.iterrows():
|
|
|
|
|
end_t = phon['end_time']/1000
|
|
|
|
|
phon_ch = phon['start_phoneme']
|
|
|
|
|
phon_stops.append((end_t,phon_ch))
|
|
|
|
|
plot_sample_pitch(phrase_sample,phons = phon_stops)
|
|
|
|
|
plot_sample_pitch(self_sample)
|
|
|
|
|
# player(phrase_sample)
|
|
|
|
|
# input()
|
|
|
|
|
# for (i,phon) in g.iterrows():
|
|
|
|
|
# # phon = g.iloc[1]
|
|
|
|
|
# start_t = phon['start_time']/1000
|
|
|
|
|
# end_t = phon['end_time']/1000
|
|
|
|
|
# phon_ch = phon['start_phoneme']
|
|
|
|
|
# phon_sample = phrase_sample.extract_part(from_time=start_t,to_time=end_t)
|
|
|
|
|
# if phon_sample.n_samples*phon_sample.sampling_period < 6.4/100:
|
|
|
|
|
# continue
|
|
|
|
|
# # if phon_ch[0] not in 'AEIOU':
|
|
|
|
|
# # continue
|
|
|
|
|
# # phon_sample
|
|
|
|
|
# # player(phon_sample)
|
|
|
|
|
# # plot_sample_intensity(phon_sample)
|
|
|
|
|
# print(phon_ch)
|
|
|
|
|
# plot_sample_pitch(phon_sample)
|
2017-12-06 12:02:26 +00:00
|
|
|
# closer()
|
|
|
|
|
|
|
|
|
|
def plot_segments(collection_name = 'story_test_segments'):
|
|
|
|
|
collection_name = 'story_test_segments'
|
|
|
|
|
seg_data = pd.read_csv('./outputs/'+collection_name+'.fixed.csv',index_col=0)
|
|
|
|
|
phrase_groups = [i for i in seg_data.groupby(['phrase'])]
|
|
|
|
|
for (ph,g) in phrase_groups:
|
|
|
|
|
# ph,g = phrase_groups[0]
|
|
|
|
|
file_path = './outputs/'+collection_name+'/'+g.iloc[0]['filename']
|
|
|
|
|
phrase_sample = pm_snd(file_path)
|
|
|
|
|
# player,closer = play_sound()
|
|
|
|
|
print(ph)
|
|
|
|
|
phon_stops = []
|
|
|
|
|
for (i,phon) in g.iterrows():
|
|
|
|
|
end_t = phon['end_time']/1000
|
|
|
|
|
phon_ch = phon['start_phoneme']
|
|
|
|
|
phon_stops.append((end_t,phon_ch))
|
|
|
|
|
phrase_spec = phrase_sample.to_spectrogram(window_length=0.03, maximum_frequency=8000)
|
|
|
|
|
sg_db = 10 * np.log10(phrase_spec.values)
|
2017-12-07 09:47:59 +00:00
|
|
|
result = np.zeros(sg_db.shape[0],dtype=np.int64)
|
2017-12-06 12:02:26 +00:00
|
|
|
ph_bounds = [t[0] for t in phon_stops[1:]]
|
|
|
|
|
b_frames = np.asarray([spec_frame(phrase_spec,b) for b in ph_bounds])
|
|
|
|
|
result[b_frames] = 1
|
|
|
|
|
# print(audio)
|
|
|
|
|
|
|
|
|
|
def generate_spec(aiff_file):
|
|
|
|
|
phrase_sample = pm_snd(aiff_file)
|
|
|
|
|
phrase_spec = phrase_sample.to_spectrogram(window_length=SPEC_WINDOW_SIZE, maximum_frequency=SPEC_MAX_FREQUENCY)
|
2017-12-07 11:19:34 +00:00
|
|
|
sshow_abs = np.abs(phrase_spec.values + np.finfo(phrase_spec.values.dtype).eps)
|
|
|
|
|
sg_db = 10 * np.log10(sshow_abs)
|
|
|
|
|
sg_db[sg_db < 0] = 0
|
2017-12-06 12:02:26 +00:00
|
|
|
return sg_db,phrase_spec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def spec_frame(spec,b):
|
|
|
|
|
return int(round(spec.frame_number_to_time(b)))
|
|
|
|
|
|
|
|
|
|
def _float_feature(value):
|
|
|
|
|
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
|
|
|
|
|
|
|
|
|
|
def _int64_feature(value):
|
|
|
|
|
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
|
|
|
|
|
|
|
|
|
|
def _bytes_feature(value):
|
|
|
|
|
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
|
|
|
|
|
|
|
|
|
def create_segments_tfrecords(collection_name='story_test_segments',sample_count=0,train_test_ratio=0.1):
|
|
|
|
|
audio_samples = pd.read_csv( './outputs/segments/' + collection_name + '/index.fixed.csv',index_col=0)
|
|
|
|
|
audio_samples['file_path'] = audio_samples.loc[:, 'filename'].apply(lambda x: 'outputs/segments/' + collection_name + '/samples/' + x)
|
|
|
|
|
n_records,n_spec,n_features = 0,0,0
|
|
|
|
|
|
|
|
|
|
def write_samples(wg,sample_name):
|
|
|
|
|
phrase_groups = tqdm(wg,desc='Computing segmentation')
|
|
|
|
|
record_file = './outputs/segments/{}/{}.tfrecords'.format(collection_name,sample_name)
|
|
|
|
|
writer = tf.python_io.TFRecordWriter(record_file)
|
|
|
|
|
for (ph,g) in phrase_groups:
|
|
|
|
|
fname = g.iloc[0]['filename']
|
|
|
|
|
sg_db,phrase_spec = generate_spec(g.iloc[0]['file_path'])
|
|
|
|
|
phon_stops = []
|
2017-12-07 11:19:34 +00:00
|
|
|
phrase_groups.set_postfix(phrase=ph)
|
2017-12-06 12:02:26 +00:00
|
|
|
spec_n,spec_w = sg_db.shape
|
|
|
|
|
spec = sg_db.reshape(-1)
|
|
|
|
|
for (i,phon) in g.iterrows():
|
|
|
|
|
end_t = phon['end_time']/1000
|
|
|
|
|
phon_ch = phon['start_phoneme']
|
|
|
|
|
phon_stops.append((end_t,phon_ch))
|
2017-12-07 09:47:59 +00:00
|
|
|
result = np.zeros(spec_n,dtype=np.int64)
|
2017-12-06 12:02:26 +00:00
|
|
|
ph_bounds = [t[0] for t in phon_stops]
|
|
|
|
|
f_bounds = [spec_frame(phrase_spec,b) for b in ph_bounds]
|
|
|
|
|
valid_bounds = [i for i in f_bounds if 0 < i < spec_n]
|
|
|
|
|
b_frames = np.asarray(valid_bounds)
|
2017-12-11 07:35:46 +00:00
|
|
|
if len(b_frames) > 0:
|
|
|
|
|
result[b_frames] = 1
|
2017-12-06 12:02:26 +00:00
|
|
|
nonlocal n_records,n_spec,n_features
|
|
|
|
|
n_spec = max([n_spec,spec_n])
|
|
|
|
|
n_features = spec_w
|
|
|
|
|
n_records+=1
|
|
|
|
|
example = tf.train.Example(features=tf.train.Features(
|
|
|
|
|
feature={
|
|
|
|
|
'phrase': _bytes_feature([ph.encode('utf-8')]),
|
|
|
|
|
'file': _bytes_feature([fname.encode('utf-8')]),
|
|
|
|
|
'spec':_float_feature(spec),
|
2017-12-07 09:47:59 +00:00
|
|
|
'spec_n':_int64_feature([spec_n]),
|
|
|
|
|
'spec_w':_int64_feature([spec_w]),
|
2017-12-06 12:02:26 +00:00
|
|
|
'output':_int64_feature(result)
|
|
|
|
|
}
|
|
|
|
|
))
|
|
|
|
|
writer.write(example.SerializeToString())
|
|
|
|
|
phrase_groups.close()
|
|
|
|
|
writer.close()
|
|
|
|
|
|
|
|
|
|
word_groups = [i for i in audio_samples.groupby('phrase')]
|
|
|
|
|
wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
|
2017-12-11 07:35:46 +00:00
|
|
|
# write_samples(word_groups,'all')
|
2017-12-06 12:02:26 +00:00
|
|
|
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio)
|
|
|
|
|
write_samples(tr_audio_samples,'train')
|
2017-12-11 07:35:46 +00:00
|
|
|
write_samples(te_audio_samples,'test')
|
2017-12-06 12:02:26 +00:00
|
|
|
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
|
|
|
|
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
2017-11-30 09:19:55 +00:00
|
|
|
|
2017-12-07 06:18:19 +00:00
|
|
|
def record_generator_count(records_file):
|
|
|
|
|
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
|
|
|
|
count,spec_n = 0,0
|
|
|
|
|
for i in record_iterator:
|
|
|
|
|
count+=1
|
|
|
|
|
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
|
|
|
|
return record_iterator,count
|
|
|
|
|
|
|
|
|
|
def read_segments_tfrecords_generator(collection_name='audio',batch_size=32,test_size=0):
|
2017-12-07 09:47:59 +00:00
|
|
|
# collection_name = 'story_test'
|
2017-12-07 06:18:19 +00:00
|
|
|
records_file = './outputs/segments/'+collection_name+'/train.tfrecords'
|
|
|
|
|
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
|
|
|
|
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
|
|
|
|
|
def copy_read_consts(dest_dir):
|
|
|
|
|
shutil.copy2(const_file,dest_dir+'/constants.pkl')
|
|
|
|
|
return (n_spec,n_features,n_records)
|
|
|
|
|
# @threadsafe_iter
|
|
|
|
|
def record_generator():
|
|
|
|
|
print('reading tfrecords({}-train)...'.format(collection_name))
|
|
|
|
|
input_data = []
|
|
|
|
|
output_data = []
|
|
|
|
|
while True:
|
|
|
|
|
record_iterator,records_count = record_generator_count(records_file)
|
|
|
|
|
for (i,string_record) in enumerate(record_iterator):
|
2017-12-07 09:47:59 +00:00
|
|
|
# (i,string_record) = next(enumerate(record_iterator))
|
2017-12-07 06:18:19 +00:00
|
|
|
example = tf.train.Example()
|
|
|
|
|
example.ParseFromString(string_record)
|
|
|
|
|
spec_n = example.features.feature['spec_n'].int64_list.value[0]
|
|
|
|
|
spec_w = example.features.feature['spec_w'].int64_list.value[0]
|
|
|
|
|
spec = np.array(example.features.feature['spec'].float_list.value).reshape(spec_n,spec_w)
|
|
|
|
|
p_spec = padd_zeros(spec,n_spec)
|
|
|
|
|
input_data.append(p_spec)
|
2017-12-07 09:47:59 +00:00
|
|
|
output = np.asarray(example.features.feature['output'].int64_list.value)
|
|
|
|
|
p_output = np.pad(output,(0,n_spec-output.shape[0]),'constant')
|
|
|
|
|
output_data.append(p_output)
|
2017-12-07 06:18:19 +00:00
|
|
|
if len(input_data) == batch_size or i == n_records-1:
|
|
|
|
|
input_arr = np.asarray(input_data)
|
|
|
|
|
output_arr = np.asarray(output_data)
|
2017-12-07 09:47:59 +00:00
|
|
|
input_arr.shape,output_arr.shape
|
2017-12-07 06:18:19 +00:00
|
|
|
yield (input_arr,output_arr)
|
|
|
|
|
input_data = []
|
|
|
|
|
output_data = []
|
|
|
|
|
|
|
|
|
|
# Read test in one-shot
|
|
|
|
|
print('reading tfrecords({}-test)...'.format(collection_name))
|
|
|
|
|
te_records_file = './outputs/segments/'+collection_name+'/test.tfrecords'
|
|
|
|
|
te_re_iterator,te_n_records = record_generator_count(te_records_file)
|
2017-12-07 09:47:59 +00:00
|
|
|
# test_size = 10
|
2017-12-07 06:18:19 +00:00
|
|
|
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
|
2017-12-07 09:47:59 +00:00
|
|
|
input_data = np.zeros((test_size,n_spec,n_features))
|
|
|
|
|
output_data = np.zeros((test_size,n_spec))
|
2017-12-07 06:18:19 +00:00
|
|
|
random_samples = enumerate(reservoir_sample(te_re_iterator,test_size))
|
|
|
|
|
for (i,string_record) in tqdm(random_samples,total=test_size):
|
2017-12-07 09:47:59 +00:00
|
|
|
# (i,string_record) = next(random_samples)
|
2017-12-07 06:18:19 +00:00
|
|
|
example = tf.train.Example()
|
|
|
|
|
example.ParseFromString(string_record)
|
|
|
|
|
spec_n = example.features.feature['spec_n'].int64_list.value[0]
|
|
|
|
|
spec_w = example.features.feature['spec_w'].int64_list.value[0]
|
|
|
|
|
spec = np.array(example.features.feature['spec'].float_list.value).reshape(spec_n,spec_w)
|
|
|
|
|
p_spec = padd_zeros(spec,n_spec)
|
|
|
|
|
input_data[i] = p_spec
|
2017-12-07 09:47:59 +00:00
|
|
|
output = np.asarray(example.features.feature['output'].int64_list.value)
|
|
|
|
|
p_output = np.pad(output,(0,n_spec-output.shape[0]),'constant')
|
|
|
|
|
output_data[i] = p_output
|
2017-12-07 06:18:19 +00:00
|
|
|
|
|
|
|
|
return record_generator,input_data,output_data,copy_read_consts
|
|
|
|
|
|
2017-12-06 12:02:26 +00:00
|
|
|
if __name__ == '__main__':
|
|
|
|
|
# plot_random_phrases()
|
|
|
|
|
# fix_csv('story_test_segments')
|
|
|
|
|
# plot_segments('story_test_segments')
|
2017-12-11 08:39:04 +00:00
|
|
|
# fix_csv('story_words')
|
2017-12-07 11:19:34 +00:00
|
|
|
# pass
|
2017-12-12 06:08:27 +00:00
|
|
|
create_segments_tfrecords('story_words.30', sample_count=36,train_test_ratio=0.1)
|
2017-12-07 09:47:59 +00:00
|
|
|
# record_generator,input_data,output_data,copy_read_consts = read_segments_tfrecords_generator('story_test')
|
|
|
|
|
# tr_gen = record_generator()
|
|
|
|
|
# for i in tr_gen:
|
|
|
|
|
# print(i[0].shape,i[1].shape)
|