implemented conv2d of mnist from scratch added fourth week notes
parent
64b89c326b
commit
e792d29ba1
|
|
@ -0,0 +1,59 @@
|
||||||
|
Convolutional Neural Network
|
||||||
|
============================
|
||||||
|
Hubel and Weisel(1962) experiment -> inspiration for CNN
|
||||||
|
single neuron detects edges oriented at 45degress
|
||||||
|
|
||||||
|
filter kernel -> (a patch in image - matrix) (typical to 3x3|5x5|7x7
|
||||||
|
smaller the better)
|
||||||
|
returns a feature map
|
||||||
|
CNN -> multiple layers of kernels(1st layer computes on the input image,
|
||||||
|
subsequent layers computes on the feature maps generated by the previous
|
||||||
|
layer)
|
||||||
|
strides -> amount of pixels to overlap between kernel computation on the same
|
||||||
|
layer
|
||||||
|
(max) pooling kernel -> looks at a patch of image and
|
||||||
|
returns the (maximum) value in that patch
|
||||||
|
(doesn't have any learnable parameters)
|
||||||
|
usually the number of feature maps is doubled after a
|
||||||
|
pooling layer is computed
|
||||||
|
maps (n,n)eg.[(28x28)x128] -> (mxm)eg.[(14,14)x128] -> (x256)
|
||||||
|
|
||||||
|
No of weight required per layer = (k1xk1)xc1xc2 (c1 is channels in input layer)
|
||||||
|
(k1,k1) is the dimension of filter kernel
|
||||||
|
(c2 is number of feature maps in first layer)
|
||||||
|
-> in 1st layer
|
||||||
|
(k2,k2)xc2xc3 (c3) number of feature maps
|
||||||
|
|
||||||
|
conv2d -> padding 'same' adds 0's at the borders to make the output
|
||||||
|
dimension same as image size
|
||||||
|
'valid' does the convolution one actual pixels alone -> will return
|
||||||
|
a smaller dimension relative to the image
|
||||||
|
|
||||||
|
|
||||||
|
technique: use a smaller train/test data and try to overfit the model
|
||||||
|
(100% on train to verify that the model is expressive enough
|
||||||
|
to learn the data)
|
||||||
|
|
||||||
|
Deconvolutional Layers(misnomer):
|
||||||
|
upsampling an image using this layer
|
||||||
|
(tf.layers.conv2d_transpose,tf.nn.conv2d_transpose)
|
||||||
|
|
||||||
|
|
||||||
|
Transfer Learning:
|
||||||
|
==================
|
||||||
|
using pretrained networks as starting point for a task (using a subset of layers)
|
||||||
|
eg. VGG(Visual Geometry Group) networks (224x224 -> 1000 classes)
|
||||||
|
-> classification(what) & localization(where)
|
||||||
|
CNN works great for classification(since it is invariant to location)
|
||||||
|
to predict the location (use the earlier layers(cotains locality info)
|
||||||
|
for final output)
|
||||||
|
using it to identify a class not in the 1000 pretrained classes
|
||||||
|
using it to identify a class with input size 64x64(depends on the first layer filter size)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Regularization:
|
||||||
|
===============
|
||||||
|
Dropout based regularization is great for image classification application.
|
||||||
|
(Warning: not to be used on data without redundancy(image data has lot of redundancy
|
||||||
|
eg. identifing a partial face is quite easy))
|
||||||
|
|
@ -0,0 +1,96 @@
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.examples.tutorials.mnist import input_data
|
||||||
|
mnist = input_data.read_data_sets('../mnist_data', one_hot=True)
|
||||||
|
|
||||||
|
x = tf.placeholder(tf.float32,shape=[None,28*28])
|
||||||
|
y_ = tf.placeholder(tf.float32,shape=[None,10])
|
||||||
|
|
||||||
|
# W = tf.Variable(tf.zeros([28*28,10]))
|
||||||
|
# b = tf.Variable(tf.zeros([10]))
|
||||||
|
#
|
||||||
|
# y = tf.matmul(x,W) + b
|
||||||
|
#
|
||||||
|
# cross_entropy = tf.reduce_mean(
|
||||||
|
# tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
|
||||||
|
#
|
||||||
|
# train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
|
||||||
|
#
|
||||||
|
# with tf.Session() as sess:
|
||||||
|
# sess.run(tf.global_variables_initializer())
|
||||||
|
# for _ in range(1000):
|
||||||
|
# batch = mnist.train.next_batch(100)
|
||||||
|
# sess.run([train_step],feed_dict={x: batch[0], y_: batch[1]})
|
||||||
|
# correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
|
||||||
|
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
||||||
|
# print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
|
||||||
|
|
||||||
|
|
||||||
|
def weight_variable(shape):
|
||||||
|
initial = tf.truncated_normal(shape, stddev=0.1)
|
||||||
|
return tf.Variable(initial)
|
||||||
|
|
||||||
|
def bias_variable(shape):
|
||||||
|
initial = tf.constant(0.1, shape=shape)
|
||||||
|
return tf.Variable(initial)
|
||||||
|
|
||||||
|
def conv2d(x, W):
|
||||||
|
return tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding='VALID')
|
||||||
|
|
||||||
|
# def max_pool_3x3(x):
|
||||||
|
# return tf.nn.max_pool(x, ksize=[1, 5, 5, 1],
|
||||||
|
# strides=[1, 2, 2, 1], padding='SAME')
|
||||||
|
|
||||||
|
|
||||||
|
x_image = tf.reshape(x, [-1, 28, 28, 1])
|
||||||
|
|
||||||
|
W_conv1 = weight_variable([4, 4, 1, 128])
|
||||||
|
b_conv1 = bias_variable([128])
|
||||||
|
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
|
||||||
|
W_conv1
|
||||||
|
|
||||||
|
h_conv1
|
||||||
|
# h_pool1 = max_pool_3x3(h_conv1)
|
||||||
|
# h_pool1
|
||||||
|
h_conv1
|
||||||
|
W_conv2 = weight_variable([5, 5, 128, 64])
|
||||||
|
b_conv2 = bias_variable([64])
|
||||||
|
h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2)
|
||||||
|
h_conv2
|
||||||
|
# h_pool2 = max_pool_3x3(h_conv2)
|
||||||
|
# h_pool2
|
||||||
|
|
||||||
|
W_fc1 = weight_variable([5 * 5 * 64, 512])
|
||||||
|
W_fc1
|
||||||
|
b_fc1 = bias_variable([512])
|
||||||
|
h_pool2_flat = tf.reshape(h_conv2, [-1, 5*5*64])
|
||||||
|
h_pool2_flat
|
||||||
|
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
|
||||||
|
h_fc1
|
||||||
|
|
||||||
|
keep_prob = tf.placeholder(tf.float32)
|
||||||
|
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
|
||||||
|
h_fc1_drop
|
||||||
|
W_fc2 = weight_variable([512, 10])
|
||||||
|
b_fc2 = bias_variable([10])
|
||||||
|
|
||||||
|
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
|
||||||
|
y_conv
|
||||||
|
|
||||||
|
cross_entropy = tf.reduce_mean(
|
||||||
|
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
|
||||||
|
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
|
||||||
|
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
|
||||||
|
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
||||||
|
|
||||||
|
with tf.Session() as sess:
|
||||||
|
sess.run(tf.global_variables_initializer())
|
||||||
|
for i in range(20000):
|
||||||
|
batch = mnist.train.next_batch(50)
|
||||||
|
if i % 100 == 0:
|
||||||
|
train_accuracy = accuracy.eval(feed_dict={
|
||||||
|
x: batch[0], y_: batch[1], keep_prob: 1.0})
|
||||||
|
print('step %d, training accuracy %g' % (i, train_accuracy))
|
||||||
|
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
|
||||||
|
|
||||||
|
print('test accuracy %g' % accuracy.eval(feed_dict={
|
||||||
|
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
|
||||||
|
|
@ -0,0 +1,176 @@
|
||||||
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
"""A deep MNIST classifier using convolutional layers.
|
||||||
|
|
||||||
|
See extensive documentation at
|
||||||
|
https://www.tensorflow.org/get_started/mnist/pros
|
||||||
|
"""
|
||||||
|
# Disable linter warnings to maintain consistency with tutorial.
|
||||||
|
# pylint: disable=invalid-name
|
||||||
|
# pylint: disable=g-bad-import-order
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import sys
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
from tensorflow.examples.tutorials.mnist import input_data
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
FLAGS = None
|
||||||
|
|
||||||
|
|
||||||
|
def deepnn(x):
|
||||||
|
"""deepnn builds the graph for a deep net for classifying digits.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: an input tensor with the dimensions (N_examples, 784), where 784 is the
|
||||||
|
number of pixels in a standard MNIST image.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
|
||||||
|
equal to the logits of classifying the digit into one of 10 classes (the
|
||||||
|
digits 0-9). keep_prob is a scalar placeholder for the probability of
|
||||||
|
dropout.
|
||||||
|
"""
|
||||||
|
# Reshape to use within a convolutional neural net.
|
||||||
|
# Last dimension is for "features" - there is only one here, since images are
|
||||||
|
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
|
||||||
|
with tf.name_scope('reshape'):
|
||||||
|
x_image = tf.reshape(x, [-1, 28, 28, 1])
|
||||||
|
|
||||||
|
# First convolutional layer - maps one grayscale image to 32 feature maps.
|
||||||
|
with tf.name_scope('conv1'):
|
||||||
|
W_conv1 = weight_variable([5, 5, 1, 32])
|
||||||
|
b_conv1 = bias_variable([32])
|
||||||
|
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
|
||||||
|
|
||||||
|
# Pooling layer - downsamples by 2X.
|
||||||
|
with tf.name_scope('pool1'):
|
||||||
|
h_pool1 = max_pool_2x2(h_conv1)
|
||||||
|
|
||||||
|
# Second convolutional layer -- maps 32 feature maps to 64.
|
||||||
|
with tf.name_scope('conv2'):
|
||||||
|
W_conv2 = weight_variable([5, 5, 32, 64])
|
||||||
|
b_conv2 = bias_variable([64])
|
||||||
|
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
|
||||||
|
|
||||||
|
# Second pooling layer.
|
||||||
|
with tf.name_scope('pool2'):
|
||||||
|
h_pool2 = max_pool_2x2(h_conv2)
|
||||||
|
|
||||||
|
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
|
||||||
|
# is down to 7x7x64 feature maps -- maps this to 1024 features.
|
||||||
|
with tf.name_scope('fc1'):
|
||||||
|
W_fc1 = weight_variable([7 * 7 * 64, 1024])
|
||||||
|
b_fc1 = bias_variable([1024])
|
||||||
|
|
||||||
|
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
|
||||||
|
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
|
||||||
|
|
||||||
|
# Dropout - controls the complexity of the model, prevents co-adaptation of
|
||||||
|
# features.
|
||||||
|
with tf.name_scope('dropout'):
|
||||||
|
keep_prob = tf.placeholder(tf.float32)
|
||||||
|
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
|
||||||
|
|
||||||
|
# Map the 1024 features to 10 classes, one for each digit
|
||||||
|
with tf.name_scope('fc2'):
|
||||||
|
W_fc2 = weight_variable([1024, 10])
|
||||||
|
b_fc2 = bias_variable([10])
|
||||||
|
|
||||||
|
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
|
||||||
|
return y_conv, keep_prob
|
||||||
|
|
||||||
|
|
||||||
|
def conv2d(x, W):
|
||||||
|
"""conv2d returns a 2d convolution layer with full stride."""
|
||||||
|
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
|
||||||
|
|
||||||
|
|
||||||
|
def max_pool_2x2(x):
|
||||||
|
"""max_pool_2x2 downsamples a feature map by 2X."""
|
||||||
|
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
|
||||||
|
strides=[1, 2, 2, 1], padding='SAME')
|
||||||
|
|
||||||
|
|
||||||
|
def weight_variable(shape):
|
||||||
|
"""weight_variable generates a weight variable of a given shape."""
|
||||||
|
initial = tf.truncated_normal(shape, stddev=0.1)
|
||||||
|
return tf.Variable(initial)
|
||||||
|
|
||||||
|
|
||||||
|
def bias_variable(shape):
|
||||||
|
"""bias_variable generates a bias variable of a given shape."""
|
||||||
|
initial = tf.constant(0.1, shape=shape)
|
||||||
|
return tf.Variable(initial)
|
||||||
|
|
||||||
|
|
||||||
|
def main(_):
|
||||||
|
# Import data
|
||||||
|
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
|
||||||
|
|
||||||
|
# Create the model
|
||||||
|
x = tf.placeholder(tf.float32, [None, 784])
|
||||||
|
|
||||||
|
# Define loss and optimizer
|
||||||
|
y_ = tf.placeholder(tf.float32, [None, 10])
|
||||||
|
|
||||||
|
# Build the graph for the deep net
|
||||||
|
y_conv, keep_prob = deepnn(x)
|
||||||
|
|
||||||
|
with tf.name_scope('loss'):
|
||||||
|
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
|
||||||
|
logits=y_conv)
|
||||||
|
cross_entropy = tf.reduce_mean(cross_entropy)
|
||||||
|
|
||||||
|
with tf.name_scope('adam_optimizer'):
|
||||||
|
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
|
||||||
|
|
||||||
|
with tf.name_scope('accuracy'):
|
||||||
|
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
|
||||||
|
correct_prediction = tf.cast(correct_prediction, tf.float32)
|
||||||
|
accuracy = tf.reduce_mean(correct_prediction)
|
||||||
|
|
||||||
|
graph_location = tempfile.mkdtemp()
|
||||||
|
print('Saving graph to: %s' % graph_location)
|
||||||
|
train_writer = tf.summary.FileWriter(graph_location)
|
||||||
|
train_writer.add_graph(tf.get_default_graph())
|
||||||
|
|
||||||
|
with tf.Session() as sess:
|
||||||
|
sess.run(tf.global_variables_initializer())
|
||||||
|
for i in range(20000):
|
||||||
|
batch = mnist.train.next_batch(50)
|
||||||
|
if i % 100 == 0:
|
||||||
|
train_accuracy = accuracy.eval(feed_dict={
|
||||||
|
x: batch[0], y_: batch[1], keep_prob: 1.0})
|
||||||
|
print('step %d, training accuracy %g' % (i, train_accuracy))
|
||||||
|
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
|
||||||
|
|
||||||
|
print('test accuracy %g' % accuracy.eval(feed_dict={
|
||||||
|
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--data_dir', type=str,
|
||||||
|
default='/tmp/tensorflow/mnist/input_data',
|
||||||
|
help='Directory for storing input data')
|
||||||
|
FLAGS, unparsed = parser.parse_known_args()
|
||||||
|
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|
||||||
|
|
@ -0,0 +1,18 @@
|
||||||
|
Deep Learning:
|
||||||
|
==============
|
||||||
|
Creating a model such that we don't have to hand engineer features, instead
|
||||||
|
architecting the model such that it is capable of inferring the features
|
||||||
|
on its own with large number of datasets and layers.
|
||||||
|
|
||||||
|
Input of softmax layer is called logits( classifier )
|
||||||
|
|
||||||
|
Optimization Momentum:
|
||||||
|
======================
|
||||||
|
using averaged gradients computed in previous iterations to identify how much
|
||||||
|
weight is given to the gradient descent.
|
||||||
|
|
||||||
|
Weight initialization:
|
||||||
|
======================
|
||||||
|
create a smaller network -> compute weights
|
||||||
|
use the weights and add new layer and -> compute weights
|
||||||
|
iterate and grow the network by using precomputed weights for deeper networks.
|
||||||
|
|
@ -65,14 +65,17 @@ def create_model(input_dim,output_dim):
|
||||||
error_lower_bound = tf.constant(0.9,name='lower_bound')
|
error_lower_bound = tf.constant(0.9,name='lower_bound')
|
||||||
x = tf.placeholder(tf.float32, [None,input_dim])
|
x = tf.placeholder(tf.float32, [None,input_dim])
|
||||||
y = tf.placeholder(tf.float32, [None,output_dim])
|
y = tf.placeholder(tf.float32, [None,output_dim])
|
||||||
|
|
||||||
W1 = tf.Variable(tf.random_normal([input_dim, 512],stddev=2.0/math.sqrt(input_dim)),name='layer_1_weights')
|
W1 = tf.Variable(tf.random_normal([input_dim, 512],stddev=2.0/math.sqrt(input_dim)),name='layer_1_weights')
|
||||||
b1 = tf.Variable(tf.random_normal([512]),name='bias_1_weights')
|
b1 = tf.Variable(tf.random_normal([512]),name='bias_1_weights')
|
||||||
|
layer_1 = tf.nn.relu(tf.add(tf.matmul(x,W1),b1))
|
||||||
|
|
||||||
W2 = tf.Variable(tf.random_normal([512, 128],stddev=2.0/math.sqrt(512)),name='layer_2_weights')
|
W2 = tf.Variable(tf.random_normal([512, 128],stddev=2.0/math.sqrt(512)),name='layer_2_weights')
|
||||||
b2 = tf.Variable(tf.random_normal([128]),name='bias_2_weights')
|
b2 = tf.Variable(tf.random_normal([128]),name='bias_2_weights')
|
||||||
|
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,W2),b2))
|
||||||
|
|
||||||
W_o = tf.Variable(tf.random_normal([128, output_dim],stddev=2.0/math.sqrt(128)),name='layer_output_weights')
|
W_o = tf.Variable(tf.random_normal([128, output_dim],stddev=2.0/math.sqrt(128)),name='layer_output_weights')
|
||||||
b_o = tf.Variable(tf.random_normal([output_dim]),name='bias_output_weights')
|
b_o = tf.Variable(tf.random_normal([output_dim]),name='bias_output_weights')
|
||||||
layer_1 = tf.nn.relu(tf.add(tf.matmul(x,W1),b1))
|
|
||||||
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,W2),b2))
|
|
||||||
#y_ = tf.nn.softmax(tf.add(tf.matmul(layer_2,W_o),b_o))+1e-6
|
#y_ = tf.nn.softmax(tf.add(tf.matmul(layer_2,W_o),b_o))+1e-6
|
||||||
y_ = tf.add(tf.matmul(layer_2,W_o),b_o)#tf.nn.relu()
|
y_ = tf.add(tf.matmul(layer_2,W_o),b_o)#tf.nn.relu()
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue