diff --git a/FourthSaturday/Notes.md b/FourthSaturday/Notes.md new file mode 100644 index 0000000..c8f71b2 --- /dev/null +++ b/FourthSaturday/Notes.md @@ -0,0 +1,59 @@ +Convolutional Neural Network +============================ +Hubel and Weisel(1962) experiment -> inspiration for CNN +single neuron detects edges oriented at 45degress + +filter kernel -> (a patch in image - matrix) (typical to 3x3|5x5|7x7 + smaller the better) + returns a feature map +CNN -> multiple layers of kernels(1st layer computes on the input image, + subsequent layers computes on the feature maps generated by the previous + layer) +strides -> amount of pixels to overlap between kernel computation on the same + layer +(max) pooling kernel -> looks at a patch of image and + returns the (maximum) value in that patch + (doesn't have any learnable parameters) + usually the number of feature maps is doubled after a + pooling layer is computed + maps (n,n)eg.[(28x28)x128] -> (mxm)eg.[(14,14)x128] -> (x256) + +No of weight required per layer = (k1xk1)xc1xc2 (c1 is channels in input layer) + (k1,k1) is the dimension of filter kernel + (c2 is number of feature maps in first layer) + -> in 1st layer + (k2,k2)xc2xc3 (c3) number of feature maps + +conv2d -> padding 'same' adds 0's at the borders to make the output + dimension same as image size + 'valid' does the convolution one actual pixels alone -> will return + a smaller dimension relative to the image + + +technique: use a smaller train/test data and try to overfit the model + (100% on train to verify that the model is expressive enough + to learn the data) + +Deconvolutional Layers(misnomer): +upsampling an image using this layer +(tf.layers.conv2d_transpose,tf.nn.conv2d_transpose) + + +Transfer Learning: +================== +using pretrained networks as starting point for a task (using a subset of layers) +eg. VGG(Visual Geometry Group) networks (224x224 -> 1000 classes) + -> classification(what) & localization(where) +CNN works great for classification(since it is invariant to location) +to predict the location (use the earlier layers(cotains locality info) +for final output) +using it to identify a class not in the 1000 pretrained classes +using it to identify a class with input size 64x64(depends on the first layer filter size) + + + +Regularization: +=============== +Dropout based regularization is great for image classification application. +(Warning: not to be used on data without redundancy(image data has lot of redundancy + eg. identifing a partial face is quite easy)) diff --git a/FourthSaturday/mnist_conv.py b/FourthSaturday/mnist_conv.py new file mode 100644 index 0000000..651593f --- /dev/null +++ b/FourthSaturday/mnist_conv.py @@ -0,0 +1,96 @@ +import tensorflow as tf +from tensorflow.examples.tutorials.mnist import input_data +mnist = input_data.read_data_sets('../mnist_data', one_hot=True) + +x = tf.placeholder(tf.float32,shape=[None,28*28]) +y_ = tf.placeholder(tf.float32,shape=[None,10]) + +# W = tf.Variable(tf.zeros([28*28,10])) +# b = tf.Variable(tf.zeros([10])) +# +# y = tf.matmul(x,W) + b +# +# cross_entropy = tf.reduce_mean( +# tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) +# +# train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) +# +# with tf.Session() as sess: +# sess.run(tf.global_variables_initializer()) +# for _ in range(1000): +# batch = mnist.train.next_batch(100) +# sess.run([train_step],feed_dict={x: batch[0], y_: batch[1]}) +# correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) +# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) +# print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) + + +def weight_variable(shape): + initial = tf.truncated_normal(shape, stddev=0.1) + return tf.Variable(initial) + +def bias_variable(shape): + initial = tf.constant(0.1, shape=shape) + return tf.Variable(initial) + +def conv2d(x, W): + return tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding='VALID') + +# def max_pool_3x3(x): +# return tf.nn.max_pool(x, ksize=[1, 5, 5, 1], +# strides=[1, 2, 2, 1], padding='SAME') + + +x_image = tf.reshape(x, [-1, 28, 28, 1]) + +W_conv1 = weight_variable([4, 4, 1, 128]) +b_conv1 = bias_variable([128]) +h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) +W_conv1 + +h_conv1 +# h_pool1 = max_pool_3x3(h_conv1) +# h_pool1 +h_conv1 +W_conv2 = weight_variable([5, 5, 128, 64]) +b_conv2 = bias_variable([64]) +h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2) +h_conv2 +# h_pool2 = max_pool_3x3(h_conv2) +# h_pool2 + +W_fc1 = weight_variable([5 * 5 * 64, 512]) +W_fc1 +b_fc1 = bias_variable([512]) +h_pool2_flat = tf.reshape(h_conv2, [-1, 5*5*64]) +h_pool2_flat +h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) +h_fc1 + +keep_prob = tf.placeholder(tf.float32) +h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) +h_fc1_drop +W_fc2 = weight_variable([512, 10]) +b_fc2 = bias_variable([10]) + +y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 +y_conv + +cross_entropy = tf.reduce_mean( + tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) +train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) +correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) +accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) + +with tf.Session() as sess: + sess.run(tf.global_variables_initializer()) + for i in range(20000): + batch = mnist.train.next_batch(50) + if i % 100 == 0: + train_accuracy = accuracy.eval(feed_dict={ + x: batch[0], y_: batch[1], keep_prob: 1.0}) + print('step %d, training accuracy %g' % (i, train_accuracy)) + train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) + + print('test accuracy %g' % accuracy.eval(feed_dict={ + x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) diff --git a/FourthSaturday/mnist_deep.py b/FourthSaturday/mnist_deep.py new file mode 100644 index 0000000..4b5b504 --- /dev/null +++ b/FourthSaturday/mnist_deep.py @@ -0,0 +1,176 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +"""A deep MNIST classifier using convolutional layers. + +See extensive documentation at +https://www.tensorflow.org/get_started/mnist/pros +""" +# Disable linter warnings to maintain consistency with tutorial. +# pylint: disable=invalid-name +# pylint: disable=g-bad-import-order + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import sys +import tempfile + +from tensorflow.examples.tutorials.mnist import input_data + +import tensorflow as tf + +FLAGS = None + + +def deepnn(x): + """deepnn builds the graph for a deep net for classifying digits. + + Args: + x: an input tensor with the dimensions (N_examples, 784), where 784 is the + number of pixels in a standard MNIST image. + + Returns: + A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values + equal to the logits of classifying the digit into one of 10 classes (the + digits 0-9). keep_prob is a scalar placeholder for the probability of + dropout. + """ + # Reshape to use within a convolutional neural net. + # Last dimension is for "features" - there is only one here, since images are + # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc. + with tf.name_scope('reshape'): + x_image = tf.reshape(x, [-1, 28, 28, 1]) + + # First convolutional layer - maps one grayscale image to 32 feature maps. + with tf.name_scope('conv1'): + W_conv1 = weight_variable([5, 5, 1, 32]) + b_conv1 = bias_variable([32]) + h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) + + # Pooling layer - downsamples by 2X. + with tf.name_scope('pool1'): + h_pool1 = max_pool_2x2(h_conv1) + + # Second convolutional layer -- maps 32 feature maps to 64. + with tf.name_scope('conv2'): + W_conv2 = weight_variable([5, 5, 32, 64]) + b_conv2 = bias_variable([64]) + h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) + + # Second pooling layer. + with tf.name_scope('pool2'): + h_pool2 = max_pool_2x2(h_conv2) + + # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image + # is down to 7x7x64 feature maps -- maps this to 1024 features. + with tf.name_scope('fc1'): + W_fc1 = weight_variable([7 * 7 * 64, 1024]) + b_fc1 = bias_variable([1024]) + + h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) + h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) + + # Dropout - controls the complexity of the model, prevents co-adaptation of + # features. + with tf.name_scope('dropout'): + keep_prob = tf.placeholder(tf.float32) + h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) + + # Map the 1024 features to 10 classes, one for each digit + with tf.name_scope('fc2'): + W_fc2 = weight_variable([1024, 10]) + b_fc2 = bias_variable([10]) + + y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 + return y_conv, keep_prob + + +def conv2d(x, W): + """conv2d returns a 2d convolution layer with full stride.""" + return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') + + +def max_pool_2x2(x): + """max_pool_2x2 downsamples a feature map by 2X.""" + return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], + strides=[1, 2, 2, 1], padding='SAME') + + +def weight_variable(shape): + """weight_variable generates a weight variable of a given shape.""" + initial = tf.truncated_normal(shape, stddev=0.1) + return tf.Variable(initial) + + +def bias_variable(shape): + """bias_variable generates a bias variable of a given shape.""" + initial = tf.constant(0.1, shape=shape) + return tf.Variable(initial) + + +def main(_): + # Import data + mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) + + # Create the model + x = tf.placeholder(tf.float32, [None, 784]) + + # Define loss and optimizer + y_ = tf.placeholder(tf.float32, [None, 10]) + + # Build the graph for the deep net + y_conv, keep_prob = deepnn(x) + + with tf.name_scope('loss'): + cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, + logits=y_conv) + cross_entropy = tf.reduce_mean(cross_entropy) + + with tf.name_scope('adam_optimizer'): + train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) + + with tf.name_scope('accuracy'): + correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) + correct_prediction = tf.cast(correct_prediction, tf.float32) + accuracy = tf.reduce_mean(correct_prediction) + + graph_location = tempfile.mkdtemp() + print('Saving graph to: %s' % graph_location) + train_writer = tf.summary.FileWriter(graph_location) + train_writer.add_graph(tf.get_default_graph()) + + with tf.Session() as sess: + sess.run(tf.global_variables_initializer()) + for i in range(20000): + batch = mnist.train.next_batch(50) + if i % 100 == 0: + train_accuracy = accuracy.eval(feed_dict={ + x: batch[0], y_: batch[1], keep_prob: 1.0}) + print('step %d, training accuracy %g' % (i, train_accuracy)) + train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) + + print('test accuracy %g' % accuracy.eval(feed_dict={ + x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', type=str, + default='/tmp/tensorflow/mnist/input_data', + help='Directory for storing input data') + FLAGS, unparsed = parser.parse_known_args() + tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) diff --git a/FourthSaturday/sentiment.py b/FourthSunday/sentiment.py similarity index 100% rename from FourthSaturday/sentiment.py rename to FourthSunday/sentiment.py diff --git a/Notes.md b/Notes.md new file mode 100644 index 0000000..f9cfcc7 --- /dev/null +++ b/Notes.md @@ -0,0 +1,18 @@ +Deep Learning: +============== +Creating a model such that we don't have to hand engineer features, instead +architecting the model such that it is capable of inferring the features +on its own with large number of datasets and layers. + +Input of softmax layer is called logits( classifier ) + +Optimization Momentum: +====================== +using averaged gradients computed in previous iterations to identify how much +weight is given to the gradient descent. + +Weight initialization: +====================== +create a smaller network -> compute weights +use the weights and add new layer and -> compute weights +iterate and grow the network by using precomputed weights for deeper networks. diff --git a/ThirdSunday/Faces.py b/ThirdSunday/Faces.py index 1531f7e..215e619 100644 --- a/ThirdSunday/Faces.py +++ b/ThirdSunday/Faces.py @@ -65,14 +65,17 @@ def create_model(input_dim,output_dim): error_lower_bound = tf.constant(0.9,name='lower_bound') x = tf.placeholder(tf.float32, [None,input_dim]) y = tf.placeholder(tf.float32, [None,output_dim]) + W1 = tf.Variable(tf.random_normal([input_dim, 512],stddev=2.0/math.sqrt(input_dim)),name='layer_1_weights') b1 = tf.Variable(tf.random_normal([512]),name='bias_1_weights') + layer_1 = tf.nn.relu(tf.add(tf.matmul(x,W1),b1)) + W2 = tf.Variable(tf.random_normal([512, 128],stddev=2.0/math.sqrt(512)),name='layer_2_weights') b2 = tf.Variable(tf.random_normal([128]),name='bias_2_weights') + layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,W2),b2)) + W_o = tf.Variable(tf.random_normal([128, output_dim],stddev=2.0/math.sqrt(128)),name='layer_output_weights') b_o = tf.Variable(tf.random_normal([output_dim]),name='bias_output_weights') - layer_1 = tf.nn.relu(tf.add(tf.matmul(x,W1),b1)) - layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,W2),b2)) #y_ = tf.nn.softmax(tf.add(tf.matmul(layer_2,W_o),b_o))+1e-6 y_ = tf.add(tf.matmul(layer_2,W_o),b_o)#tf.nn.relu()