mirror of https://github.com/malarinv/tacotron2
33 lines
921 B
Python
33 lines
921 B
Python
# -*- coding: utf-8 -*-
|
|
import numpy as np
|
|
from scipy.io.wavfile import read
|
|
import torch
|
|
|
|
|
|
def get_mask_from_lengths(lengths):
|
|
max_len = torch.max(lengths).item()
|
|
ids = torch.arange(
|
|
0, max_len, out=torch.LongTensor(max_len)
|
|
) # initially out = torch.LongTensor(max_len)
|
|
mask = (ids < lengths.unsqueeze(1)).byte()
|
|
return mask
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding="utf-8") as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
return filepaths_and_text
|
|
|
|
|
|
def to_gpu(x):
|
|
x = x.contiguous()
|
|
|
|
if torch.cuda.is_available(): #initially not commented out
|
|
x = x.cuda(non_blocking=True) # initially not commented out
|
|
return torch.autograd.Variable(x)
|