tacotron2/taco2/hparams.py

81 lines
2.4 KiB
Python

# -*- coding: utf-8 -*-
# import tensorflow as tf
from dataclasses import dataclass
from .text import symbols
# from .text_codec import symbols
@dataclass
class HParams(object):
"""docstring for HParams."""
################################
# Experiment Parameters #
################################
epochs = 500
iters_per_checkpoint = 1000
seed = 1234
dynamic_loss_scaling = True
fp16_run = False
distributed_run = False
dist_backend = "nccl"
dist_url = "tcp://localhost:54321"
cudnn_enabled = True
cudnn_benchmark = False
ignore_layers = ["embedding.weight"]
################################
# Data Parameters #
################################
load_mel_from_disk = False
training_files = "lists/tts_data_train_processed.txt"
validation_files = "filelists/tts_data_val_processed.txt"
text_cleaners = ["english_cleaners"]
################################
# Audio Parameters #
################################
max_wav_value = 32768.0
sampling_rate = 22050
filter_length = 1024
hop_length = 256
win_length = 1024
n_mel_channels: int = 80
mel_fmin: float = 0.0
mel_fmax: float = 8000.0
################################
# Model Parameters #
################################
n_symbols = len(symbols)
symbols_embedding_dim = 512
# Encoder parameters
encoder_kernel_size = 5
encoder_n_convolutions = 3
encoder_embedding_dim = 512
# Decoder parameters
n_frames_per_step = 1 # currently only 1 is supported
decoder_rnn_dim = 1024
prenet_dim = 256
max_decoder_steps = 1000
gate_threshold = 0.5
p_attention_dropout = 0.1
p_decoder_dropout = 0.1
# Attention parameters
attention_rnn_dim = 1024
attention_dim = 128
# Location Layer parameters
attention_location_n_filters = 32
attention_location_kernel_size = 31
# Mel-post processing network parameters
postnet_embedding_dim = 512
postnet_kernel_size = 5
postnet_n_convolutions = 5
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate = False
learning_rate = 1e-3
weight_decay = 1e-6
grad_clip_thresh = 1.0
batch_size = 4
mask_padding = True # set model's padded outputs to padded values