# -*- coding: utf-8 -*- # import tensorflow as tf from dataclasses import dataclass from .text import symbols @dataclass class HParams(object): """docstring for HParams.""" ################################ # Experiment Parameters # ################################ epochs=500 iters_per_checkpoint=1000 seed=1234 dynamic_loss_scaling=True fp16_run=False distributed_run=False dist_backend="nccl" dist_url="tcp://localhost:54321" cudnn_enabled=True cudnn_benchmark=False ignore_layers=["embedding.weight"] ################################ # Data Parameters # ################################ load_mel_from_disk=False training_files="lists/tts_data_train_processed.txt" validation_files="filelists/tts_data_val_processed.txt" text_cleaners=["english_cleaners"] ################################ # Audio Parameters # ################################ max_wav_value=32768.0 sampling_rate=16000 filter_length=1024 hop_length=256 win_length=1024 n_mel_channels=80 mel_fmin=0.0 mel_fmax=8000.0 ################################ # Model Parameters # ################################ n_symbols=len(symbols) symbols_embedding_dim=512 # Encoder parameters encoder_kernel_size=5 encoder_n_convolutions=3 encoder_embedding_dim=512 # Decoder parameters n_frames_per_step=1 # currently only 1 is supported decoder_rnn_dim=1024 prenet_dim=256 max_decoder_steps=1000 gate_threshold=0.5 p_attention_dropout=0.1 p_decoder_dropout=0.1 # Attention parameters attention_rnn_dim=1024 attention_dim=128 # Location Layer parameters attention_location_n_filters=32 attention_location_kernel_size=31 # Mel-post processing network parameters postnet_embedding_dim=512 postnet_kernel_size=5 postnet_n_convolutions=5 ################################ # Optimization Hyperparameters # ################################ use_saved_learning_rate=False learning_rate=1e-3 weight_decay=1e-6 grad_clip_thresh=1.0 batch_size=4 mask_padding=True # set model's padded outputs to padded values