#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import torch from .hparams import create_hparams from .text import text_to_sequence from .glow import WaveGlow # import os # import soundfile as sf import pyaudio import klepto from librosa import resample from librosa.effects import time_stretch from sia.file_utils import cached_model_path from sia.instruments import do_time from .model import Tacotron2 TTS_SAMPLE_RATE = 22050 OUTPUT_SAMPLE_RATE = 16000 # config from # https://github.com/NVIDIA/waveglow/blob/master/config.json WAVEGLOW_CONFIG = { "n_mel_channels": 80, "n_flows": 12, "n_group": 8, "n_early_every": 4, "n_early_size": 2, "WN_config": {"n_layers": 8, "n_channels": 256, "kernel_size": 3}, } class TTSModel(object): """docstring for TTSModel.""" def __init__(self): super(TTSModel, self).__init__() hparams = create_hparams() hparams.sampling_rate = TTS_SAMPLE_RATE self.model = Tacotron2(hparams) tacotron2_path = cached_model_path("tacotron2_model") self.model.load_state_dict( torch.load(tacotron2_path, map_location="cpu")["state_dict"] ) self.model.eval() waveglow_path = cached_model_path("waveglow_model") self.waveglow = WaveGlow(**WAVEGLOW_CONFIG) wave_params = torch.load(waveglow_path, map_location="cpu") self.waveglow.load_state_dict(wave_params) self.waveglow.eval() for k in self.waveglow.convinv: k.float() self.k_cache = klepto.archives.file_archive(cached=False) self.synth_speech = klepto.safe.inf_cache(cache=self.k_cache)( self.synth_speech ) # workaround from # https://github.com/NVIDIA/waveglow/issues/127 for m in self.waveglow.modules(): if "Conv" in str(type(m)): setattr(m, "padding_mode", "zeros") @do_time def synth_speech(self, t): text = t sequence = np.array(text_to_sequence(text, ["english_cleaners"]))[ None, : ] sequence = torch.autograd.Variable(torch.from_numpy(sequence)).long() mel_outputs, mel_outputs_postnet, _, alignments = self.model.inference( sequence ) with torch.no_grad(): audio_t = self.waveglow.infer(mel_outputs_postnet, sigma=0.666) audio = audio_t[0].data.cpu().numpy() # data = convert(audio) slow_data = time_stretch(audio, 0.8) float_data = resample(slow_data, TTS_SAMPLE_RATE, OUTPUT_SAMPLE_RATE) data = float2pcm(float_data) return data.tobytes() # adapted from # https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py def float2pcm(sig, dtype="int16"): """Convert floating point signal with a range from -1 to 1 to PCM. Any signal values outside the interval [-1.0, 1.0) are clipped. No dithering is used. Note that there are different possibilities for scaling floating point numbers to PCM numbers, this function implements just one of them. For an overview of alternatives see http://blog.bjornroche.com/2009/12/int-float-int-its-jungle-out-there.html Parameters ---------- sig : array_like Input array, must have floating point type. dtype : data type, optional Desired (integer) data type. Returns ------- numpy.ndarray Integer data, scaled and clipped to the range of the given *dtype*. See Also -------- pcm2float, dtype """ sig = np.asarray(sig) if sig.dtype.kind != "f": raise TypeError("'sig' must be a float array") dtype = np.dtype(dtype) if dtype.kind not in "iu": raise TypeError("'dtype' must be an integer type") i = np.iinfo(dtype) abs_max = 2 ** (i.bits - 1) offset = i.min + abs_max return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype) def display(data): import IPython.display as ipd aud = ipd.Audio(data, rate=16000) return aud def player_gen(): audio_interface = pyaudio.PyAudio() _audio_stream = audio_interface.open( format=pyaudio.paInt16, channels=1, rate=OUTPUT_SAMPLE_RATE, output=True, ) def play_device(data): _audio_stream.write(data) # _audio_stream.close() return play_device def synthesize_corpus(): tts_model = TTSModel() all_data = [] for (i, line) in enumerate(open("corpus.txt").readlines()): print('synthesizing... "{}"'.format(line.strip())) data = tts_model.synth_speech(line.strip()) all_data.append(data) return all_data def play_corpus(corpus_synths): player = player_gen() for d in corpus_synths: player(d) def main(): corpus_synth_data = synthesize_corpus() play_corpus(corpus_synth_data) import pdb pdb.set_trace() if __name__ == "__main__": main()