# -*- coding: utf-8 -*- # import tensorflow as tf from dataclasses import dataclass from .text import symbols # from .text_codec import symbols @dataclass class HParams(object): """docstring for HParams.""" ################################ # Experiment Parameters # ################################ epochs = 500 iters_per_checkpoint = 1000 seed = 1234 dynamic_loss_scaling = True fp16_run = False distributed_run = False dist_backend = "nccl" dist_url = "tcp://localhost:54321" cudnn_enabled = True cudnn_benchmark = False ignore_layers = ["embedding.weight"] ################################ # Data Parameters # ################################ load_mel_from_disk = False training_files = "lists/tts_data_train_processed.txt" validation_files = "filelists/tts_data_val_processed.txt" text_cleaners = ["english_cleaners"] ################################ # Audio Parameters # ################################ max_wav_value = 32768.0 sampling_rate = 16000 filter_length = 1024 hop_length = 256 win_length = 1024 n_mel_channels: int = 80 mel_fmin: float = 0.0 mel_fmax: float = 8000.0 ################################ # Model Parameters # ################################ n_symbols = len(symbols) symbols_embedding_dim = 512 # Encoder parameters encoder_kernel_size = 5 encoder_n_convolutions = 3 encoder_embedding_dim = 512 # Decoder parameters n_frames_per_step = 1 # currently only 1 is supported decoder_rnn_dim = 1024 prenet_dim = 256 max_decoder_steps = 1000 gate_threshold = 0.5 p_attention_dropout = 0.1 p_decoder_dropout = 0.1 # Attention parameters attention_rnn_dim = 1024 attention_dim = 128 # Location Layer parameters attention_location_n_filters = 32 attention_location_kernel_size = 31 # Mel-post processing network parameters postnet_embedding_dim = 512 postnet_kernel_size = 5 postnet_n_convolutions = 5 ################################ # Optimization Hyperparameters # ################################ use_saved_learning_rate = False learning_rate = 1e-3 weight_decay = 1e-6 grad_clip_thresh = 1.0 batch_size = 4 mask_padding = True # set model's padded outputs to padded values