mirror of https://github.com/malarinv/tacotron2
distributed.py: rewrite
parent
1683a57ae5
commit
d0aa9e7d32
|
|
@ -118,3 +118,55 @@ class DistributedDataParallel(Module):
|
|||
super(DistributedDataParallel, self).train(mode)
|
||||
self.module.train(mode)
|
||||
'''
|
||||
'''
|
||||
Modifies existing model to do gradient allreduce, but doesn't change class
|
||||
so you don't need "module"
|
||||
'''
|
||||
def apply_gradient_allreduce(module):
|
||||
if not hasattr(dist, '_backend'):
|
||||
module.warn_on_half = True
|
||||
else:
|
||||
module.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False
|
||||
|
||||
for p in module.state_dict().values():
|
||||
if not torch.is_tensor(p):
|
||||
continue
|
||||
dist.broadcast(p, 0)
|
||||
|
||||
def allreduce_params():
|
||||
if(module.needs_reduction):
|
||||
module.needs_reduction = False
|
||||
buckets = {}
|
||||
for param in module.parameters():
|
||||
if param.requires_grad and param.grad is not None:
|
||||
tp = type(param.data)
|
||||
if tp not in buckets:
|
||||
buckets[tp] = []
|
||||
buckets[tp].append(param)
|
||||
if module.warn_on_half:
|
||||
if torch.cuda.HalfTensor in buckets:
|
||||
print("WARNING: gloo dist backend for half parameters may be extremely slow." +
|
||||
" It is recommended to use the NCCL backend in this case. This currently requires" +
|
||||
"PyTorch built from top of tree master.")
|
||||
module.warn_on_half = False
|
||||
|
||||
for tp in buckets:
|
||||
bucket = buckets[tp]
|
||||
grads = [param.grad.data for param in bucket]
|
||||
coalesced = _flatten_dense_tensors(grads)
|
||||
dist.all_reduce(coalesced)
|
||||
coalesced /= dist.get_world_size()
|
||||
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
|
||||
buf.copy_(synced)
|
||||
|
||||
for param in list(module.parameters()):
|
||||
def allreduce_hook(*unused):
|
||||
param._execution_engine.queue_callback(allreduce_params)
|
||||
if param.requires_grad:
|
||||
param.register_hook(allreduce_hook)
|
||||
|
||||
def set_needs_reduction(self, input, output):
|
||||
self.needs_reduction = True
|
||||
|
||||
module.register_forward_hook(set_needs_reduction)
|
||||
return module
|
||||
|
|
|
|||
Loading…
Reference in New Issue