mirror of https://github.com/malarinv/tacotron2
text/: adding Keith Itos text pre-processing
parent
09bbec073d
commit
d04f38cf63
|
|
@ -0,0 +1,19 @@
|
||||||
|
Copyright (c) 2017 Keith Ito
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in
|
||||||
|
all copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||||
|
THE SOFTWARE.
|
||||||
|
|
@ -0,0 +1,76 @@
|
||||||
|
""" from https://github.com/keithito/tacotron """
|
||||||
|
import re
|
||||||
|
from text import cleaners
|
||||||
|
from text.symbols import symbols
|
||||||
|
|
||||||
|
|
||||||
|
# Mappings from symbol to numeric ID and vice versa:
|
||||||
|
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||||
|
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
||||||
|
|
||||||
|
# Regular expression matching text enclosed in curly braces:
|
||||||
|
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
||||||
|
|
||||||
|
|
||||||
|
def text_to_sequence(text, cleaner_names):
|
||||||
|
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||||
|
|
||||||
|
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
|
||||||
|
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: string to convert to a sequence
|
||||||
|
cleaner_names: names of the cleaner functions to run the text through
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of integers corresponding to the symbols in the text
|
||||||
|
'''
|
||||||
|
sequence = []
|
||||||
|
|
||||||
|
# Check for curly braces and treat their contents as ARPAbet:
|
||||||
|
while len(text):
|
||||||
|
m = _curly_re.match(text)
|
||||||
|
if not m:
|
||||||
|
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
|
||||||
|
break
|
||||||
|
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
|
||||||
|
sequence += _arpabet_to_sequence(m.group(2))
|
||||||
|
text = m.group(3)
|
||||||
|
|
||||||
|
# Append EOS token
|
||||||
|
sequence.append(_symbol_to_id['~'])
|
||||||
|
return sequence
|
||||||
|
|
||||||
|
|
||||||
|
def sequence_to_text(sequence):
|
||||||
|
'''Converts a sequence of IDs back to a string'''
|
||||||
|
result = ''
|
||||||
|
for symbol_id in sequence:
|
||||||
|
if symbol_id in _id_to_symbol:
|
||||||
|
s = _id_to_symbol[symbol_id]
|
||||||
|
# Enclose ARPAbet back in curly braces:
|
||||||
|
if len(s) > 1 and s[0] == '@':
|
||||||
|
s = '{%s}' % s[1:]
|
||||||
|
result += s
|
||||||
|
return result.replace('}{', ' ')
|
||||||
|
|
||||||
|
|
||||||
|
def _clean_text(text, cleaner_names):
|
||||||
|
for name in cleaner_names:
|
||||||
|
cleaner = getattr(cleaners, name)
|
||||||
|
if not cleaner:
|
||||||
|
raise Exception('Unknown cleaner: %s' % name)
|
||||||
|
text = cleaner(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def _symbols_to_sequence(symbols):
|
||||||
|
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
|
||||||
|
|
||||||
|
|
||||||
|
def _arpabet_to_sequence(text):
|
||||||
|
return _symbols_to_sequence(['@' + s for s in text.split()])
|
||||||
|
|
||||||
|
|
||||||
|
def _should_keep_symbol(s):
|
||||||
|
return s in _symbol_to_id and s is not '_' and s is not '~'
|
||||||
|
|
@ -0,0 +1,90 @@
|
||||||
|
""" from https://github.com/keithito/tacotron """
|
||||||
|
|
||||||
|
'''
|
||||||
|
Cleaners are transformations that run over the input text at both training and eval time.
|
||||||
|
|
||||||
|
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||||||
|
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||||||
|
1. "english_cleaners" for English text
|
||||||
|
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||||||
|
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||||||
|
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||||||
|
the symbols in symbols.py to match your data).
|
||||||
|
'''
|
||||||
|
|
||||||
|
import re
|
||||||
|
from unidecode import unidecode
|
||||||
|
from .numbers import normalize_numbers
|
||||||
|
|
||||||
|
|
||||||
|
# Regular expression matching whitespace:
|
||||||
|
_whitespace_re = re.compile(r'\s+')
|
||||||
|
|
||||||
|
# List of (regular expression, replacement) pairs for abbreviations:
|
||||||
|
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||||
|
('mrs', 'misess'),
|
||||||
|
('mr', 'mister'),
|
||||||
|
('dr', 'doctor'),
|
||||||
|
('st', 'saint'),
|
||||||
|
('co', 'company'),
|
||||||
|
('jr', 'junior'),
|
||||||
|
('maj', 'major'),
|
||||||
|
('gen', 'general'),
|
||||||
|
('drs', 'doctors'),
|
||||||
|
('rev', 'reverend'),
|
||||||
|
('lt', 'lieutenant'),
|
||||||
|
('hon', 'honorable'),
|
||||||
|
('sgt', 'sergeant'),
|
||||||
|
('capt', 'captain'),
|
||||||
|
('esq', 'esquire'),
|
||||||
|
('ltd', 'limited'),
|
||||||
|
('col', 'colonel'),
|
||||||
|
('ft', 'fort'),
|
||||||
|
]]
|
||||||
|
|
||||||
|
|
||||||
|
def expand_abbreviations(text):
|
||||||
|
for regex, replacement in _abbreviations:
|
||||||
|
text = re.sub(regex, replacement, text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def expand_numbers(text):
|
||||||
|
return normalize_numbers(text)
|
||||||
|
|
||||||
|
|
||||||
|
def lowercase(text):
|
||||||
|
return text.lower()
|
||||||
|
|
||||||
|
|
||||||
|
def collapse_whitespace(text):
|
||||||
|
return re.sub(_whitespace_re, ' ', text)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_to_ascii(text):
|
||||||
|
return unidecode(text)
|
||||||
|
|
||||||
|
|
||||||
|
def basic_cleaners(text):
|
||||||
|
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
||||||
|
text = lowercase(text)
|
||||||
|
text = collapse_whitespace(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def transliteration_cleaners(text):
|
||||||
|
'''Pipeline for non-English text that transliterates to ASCII.'''
|
||||||
|
text = convert_to_ascii(text)
|
||||||
|
text = lowercase(text)
|
||||||
|
text = collapse_whitespace(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def english_cleaners(text):
|
||||||
|
'''Pipeline for English text, including number and abbreviation expansion.'''
|
||||||
|
text = convert_to_ascii(text)
|
||||||
|
text = lowercase(text)
|
||||||
|
text = expand_numbers(text)
|
||||||
|
text = expand_abbreviations(text)
|
||||||
|
text = collapse_whitespace(text)
|
||||||
|
return text
|
||||||
|
|
@ -0,0 +1,65 @@
|
||||||
|
""" from https://github.com/keithito/tacotron """
|
||||||
|
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
valid_symbols = [
|
||||||
|
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
|
||||||
|
'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
|
||||||
|
'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
|
||||||
|
'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
|
||||||
|
'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
|
||||||
|
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
|
||||||
|
'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
|
||||||
|
]
|
||||||
|
|
||||||
|
_valid_symbol_set = set(valid_symbols)
|
||||||
|
|
||||||
|
|
||||||
|
class CMUDict:
|
||||||
|
'''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
|
||||||
|
def __init__(self, file_or_path, keep_ambiguous=True):
|
||||||
|
if isinstance(file_or_path, str):
|
||||||
|
with open(file_or_path, encoding='latin-1') as f:
|
||||||
|
entries = _parse_cmudict(f)
|
||||||
|
else:
|
||||||
|
entries = _parse_cmudict(file_or_path)
|
||||||
|
if not keep_ambiguous:
|
||||||
|
entries = {word: pron for word, pron in entries.items() if len(pron) == 1}
|
||||||
|
self._entries = entries
|
||||||
|
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self._entries)
|
||||||
|
|
||||||
|
|
||||||
|
def lookup(self, word):
|
||||||
|
'''Returns list of ARPAbet pronunciations of the given word.'''
|
||||||
|
return self._entries.get(word.upper())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
_alt_re = re.compile(r'\([0-9]+\)')
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_cmudict(file):
|
||||||
|
cmudict = {}
|
||||||
|
for line in file:
|
||||||
|
if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
|
||||||
|
parts = line.split(' ')
|
||||||
|
word = re.sub(_alt_re, '', parts[0])
|
||||||
|
pronunciation = _get_pronunciation(parts[1])
|
||||||
|
if pronunciation:
|
||||||
|
if word in cmudict:
|
||||||
|
cmudict[word].append(pronunciation)
|
||||||
|
else:
|
||||||
|
cmudict[word] = [pronunciation]
|
||||||
|
return cmudict
|
||||||
|
|
||||||
|
|
||||||
|
def _get_pronunciation(s):
|
||||||
|
parts = s.strip().split(' ')
|
||||||
|
for part in parts:
|
||||||
|
if part not in _valid_symbol_set:
|
||||||
|
return None
|
||||||
|
return ' '.join(parts)
|
||||||
|
|
@ -0,0 +1,71 @@
|
||||||
|
""" from https://github.com/keithito/tacotron """
|
||||||
|
|
||||||
|
import inflect
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
_inflect = inflect.engine()
|
||||||
|
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
||||||
|
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
||||||
|
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
||||||
|
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
||||||
|
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
||||||
|
_number_re = re.compile(r'[0-9]+')
|
||||||
|
|
||||||
|
|
||||||
|
def _remove_commas(m):
|
||||||
|
return m.group(1).replace(',', '')
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_decimal_point(m):
|
||||||
|
return m.group(1).replace('.', ' point ')
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_dollars(m):
|
||||||
|
match = m.group(1)
|
||||||
|
parts = match.split('.')
|
||||||
|
if len(parts) > 2:
|
||||||
|
return match + ' dollars' # Unexpected format
|
||||||
|
dollars = int(parts[0]) if parts[0] else 0
|
||||||
|
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||||||
|
if dollars and cents:
|
||||||
|
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||||
|
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||||
|
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
||||||
|
elif dollars:
|
||||||
|
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||||
|
return '%s %s' % (dollars, dollar_unit)
|
||||||
|
elif cents:
|
||||||
|
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||||
|
return '%s %s' % (cents, cent_unit)
|
||||||
|
else:
|
||||||
|
return 'zero dollars'
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_ordinal(m):
|
||||||
|
return _inflect.number_to_words(m.group(0))
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_number(m):
|
||||||
|
num = int(m.group(0))
|
||||||
|
if num > 1000 and num < 3000:
|
||||||
|
if num == 2000:
|
||||||
|
return 'two thousand'
|
||||||
|
elif num > 2000 and num < 2010:
|
||||||
|
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
||||||
|
elif num % 100 == 0:
|
||||||
|
return _inflect.number_to_words(num // 100) + ' hundred'
|
||||||
|
else:
|
||||||
|
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
||||||
|
else:
|
||||||
|
return _inflect.number_to_words(num, andword='')
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_numbers(text):
|
||||||
|
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||||
|
text = re.sub(_pounds_re, r'\1 pounds', text)
|
||||||
|
text = re.sub(_dollars_re, _expand_dollars, text)
|
||||||
|
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
||||||
|
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||||
|
text = re.sub(_number_re, _expand_number, text)
|
||||||
|
return text
|
||||||
|
|
@ -0,0 +1,17 @@
|
||||||
|
""" from https://github.com/keithito/tacotron """
|
||||||
|
|
||||||
|
'''
|
||||||
|
Defines the set of symbols used in text input to the model.
|
||||||
|
|
||||||
|
The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. '''
|
||||||
|
from text import cmudict
|
||||||
|
|
||||||
|
_pad = '_'
|
||||||
|
_eos = '~'
|
||||||
|
_characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? '
|
||||||
|
|
||||||
|
# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
|
||||||
|
_arpabet = ['@' + s for s in cmudict.valid_symbols]
|
||||||
|
|
||||||
|
# Export all symbols:
|
||||||
|
symbols = [_pad, _eos] + list(_characters) + _arpabet
|
||||||
Loading…
Reference in New Issue