mirror of https://github.com/malarinv/tacotron2
README.md: updating requirements and inference demo
parent
1ad939df1a
commit
58b0ec61bd
|
|
@ -1,6 +1,6 @@
|
||||||
# Tacotron 2 (without wavenet)
|
# Tacotron 2 (without wavenet)
|
||||||
|
|
||||||
Tacotron 2 PyTorch implementation of [Natural TTS Synthesis By Conditioning
|
PyTorch implementation of [Natural TTS Synthesis By Conditioning
|
||||||
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
|
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
|
||||||
|
|
||||||
This implementation includes **distributed** and **fp16** support
|
This implementation includes **distributed** and **fp16** support
|
||||||
|
|
@ -11,9 +11,7 @@ Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
[Download demo audio](https://github.com/NVIDIA/tacotron2/blob/master/demo.wav) trained on LJS and using Ryuchi Yamamoto's [pre-trained Mixture of Logistics
|
Visit our [website] for audio samples.
|
||||||
wavenet](https://github.com/r9y9/wavenet_vocoder/)
|
|
||||||
"Scientists at the CERN laboratory say they have discovered a new particle."
|
|
||||||
|
|
||||||
## Pre-requisites
|
## Pre-requisites
|
||||||
1. NVIDIA GPU + CUDA cuDNN
|
1. NVIDIA GPU + CUDA cuDNN
|
||||||
|
|
@ -24,11 +22,9 @@ wavenet](https://github.com/r9y9/wavenet_vocoder/)
|
||||||
3. CD into this repo: `cd tacotron2`
|
3. CD into this repo: `cd tacotron2`
|
||||||
4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt`
|
4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt`
|
||||||
- Alternatively, set `load_mel_from_disk=True` in `hparams.py` and update mel-spectrogram paths
|
- Alternatively, set `load_mel_from_disk=True` in `hparams.py` and update mel-spectrogram paths
|
||||||
5. Install [pytorch 0.4](https://github.com/pytorch/pytorch)
|
5. Install [PyTorch 1.0]
|
||||||
6. Install python requirements or build docker image
|
6. Install python requirements or build docker image
|
||||||
- Install python requirements: `pip install -r requirements.txt`
|
- Install python requirements: `pip install -r requirements.txt`
|
||||||
- **OR**
|
|
||||||
- Build docker image: `docker build --tag tacotron2 .`
|
|
||||||
|
|
||||||
## Training
|
## Training
|
||||||
1. `python train.py --output_directory=outdir --log_directory=logdir`
|
1. `python train.py --output_directory=outdir --log_directory=logdir`
|
||||||
|
|
@ -37,17 +33,22 @@ wavenet](https://github.com/r9y9/wavenet_vocoder/)
|
||||||
## Multi-GPU (distributed) and FP16 Training
|
## Multi-GPU (distributed) and FP16 Training
|
||||||
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
|
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
|
||||||
|
|
||||||
## Inference
|
## Inference demo
|
||||||
When performing Mel-Spectrogram to Audio synthesis with a WaveNet model, make sure Tacotron 2 and WaveNet were trained on the same mel-spectrogram representation. Follow these steps to use a a simple inference pipeline using griffin-lim:
|
1. Download our published [Tacotron 2] model
|
||||||
|
2. Download our published [WaveGlow] model
|
||||||
1. `jupyter notebook --ip=127.0.0.1 --port=31337`
|
3. `jupyter notebook --ip=127.0.0.1 --port=31337`
|
||||||
2. load inference.ipynb
|
4. Load inference.ipynb
|
||||||
|
|
||||||
|
N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2
|
||||||
|
and the Mel decoder were trained on the same mel-spectrogram representation.
|
||||||
|
|
||||||
|
|
||||||
## Related repos
|
## Related repos
|
||||||
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/): Faster than real-time
|
[WaveGlow](https://github.com/NVIDIA/WaveGlow) Faster than real time Flow-based
|
||||||
wavenet inference
|
Generative Network for Speech Synthesis
|
||||||
|
|
||||||
|
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/) Faster than real time
|
||||||
|
WaveNet.
|
||||||
|
|
||||||
## Acknowledgements
|
## Acknowledgements
|
||||||
This implementation uses code from the following repos: [Keith
|
This implementation uses code from the following repos: [Keith
|
||||||
|
|
@ -61,3 +62,7 @@ We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan
|
||||||
Wang and Zongheng Yang.
|
Wang and Zongheng Yang.
|
||||||
|
|
||||||
|
|
||||||
|
[WaveGlow]: https://drive.google.com/file/d/1cjKPHbtAMh_4HTHmuIGNkbOkPBD9qwhj/view?usp=sharing
|
||||||
|
[Tacotron 2]: https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view?usp=sharing
|
||||||
|
[pytorch 1.0]: https://github.com/pytorch/pytorch#installation
|
||||||
|
[website]: https://nv-adlr.github.io/WaveGlow
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue