1. update waveglow

2. add gl option and hyperparams to TTSModel
master
Malar Kannan 2019-10-04 15:24:42 +05:30
parent d0d273a698
commit 36c731cad0
4 changed files with 492 additions and 178 deletions

216
glow.py
View File

@ -1,4 +1,3 @@
# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -13,18 +12,19 @@
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import copy
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@ -33,9 +33,9 @@ import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.nn.functional.tanh(in_act[:, :n_channels_int, :])
s_act = torch.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
in_act = input_a+input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
@ -55,12 +55,8 @@ class WaveGlowLoss(torch.nn.Module):
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = (
torch.sum(z * z) / (2 * self.sigma * self.sigma)
- log_s_total
- log_det_W_total
)
return loss / (z.size(0) * z.size(1) * z.size(2))
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
return loss/(z.size(0)*z.size(1)*z.size(2))
class Invertible1x1Conv(torch.nn.Module):
@ -69,19 +65,17 @@ class Invertible1x1Conv(torch.nn.Module):
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(
c, c, kernel_size=1, stride=1, padding=0, bias=False
)
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
bias=False)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W[:,0] = -1*W[:,0]
W = W.view(c, c, 1)
self.conv.weight.data = W
@ -92,11 +86,11 @@ class Invertible1x1Conv(torch.nn.Module):
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, "W_inverse"):
if not hasattr(self, 'W_inverse'):
# Reverse computation
W_inverse = W.inverse()
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == "torch.cuda.HalfTensor":
if z.type() == 'torch.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
@ -110,102 +104,86 @@ class Invertible1x1Conv(torch.nn.Module):
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary
difference from WaveNet is the convolutions need not be causal. There is
also no dilation size reset. The dilation only doubles on each layer
This is the WaveNet like layer for the affine coupling. The primary difference
from WaveNet is the convolutions need not be causal. There is also no dilation
size reset. The dilation only doubles on each layer
"""
def __init__(
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
kernel_size):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert n_channels % 2 == 0
assert(kernel_size % 2 == 1)
assert(n_channels % 2 == 0)
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.cond_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name="weight")
start = torch.nn.utils.weight_norm(start, name='weight')
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = 2 ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
n_channels,
2 * n_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
padding = int((kernel_size*dilation - dilation)/2)
in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
self.in_layers.append(in_layer)
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
self.cond_layers.append(cond_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * n_channels
res_skip_channels = 2*n_channels
else:
res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(
res_skip_layer, name="weight"
)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
output = torch.zeros_like(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
spect = self.cond_layer(spect)
for i in range(self.n_layers):
spect_offset = i*2*self.n_channels
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
self.cond_layers[i](spect),
torch.IntTensor([self.n_channels]),
)
spect[:,spect_offset:spect_offset+2*self.n_channels,:],
n_channels_tensor)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
audio = res_skip_acts[:, : self.n_channels, :] + audio
skip_acts = res_skip_acts[:, self.n_channels :, :]
audio = audio + res_skip_acts[:,:self.n_channels,:]
output = output + res_skip_acts[:,self.n_channels:,:]
else:
skip_acts = res_skip_acts
output = output + res_skip_acts
if i == 0:
output = skip_acts
else:
output = skip_acts + output
return self.end(output)
class WaveGlow(torch.nn.Module):
def __init__(
self,
n_mel_channels,
n_flows,
n_group,
n_early_every,
n_early_size,
WN_config,
):
def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
n_early_size, WN_config):
super(WaveGlow, self).__init__()
self.upsample = torch.nn.ConvTranspose1d(
n_mel_channels, n_mel_channels, 1024, stride=256
)
assert n_group % 2 == 0
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
n_mel_channels,
1024, stride=256)
assert(n_group % 2 == 0)
self.n_flows = n_flows
self.n_group = n_group
self.n_early_every = n_early_every
@ -213,19 +191,18 @@ class WaveGlow(torch.nn.Module):
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_group / 2)
n_half = int(n_group/2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_group
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size / 2)
n_half = n_half - int(self.n_early_size/2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels
# Useful during inference
self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels # Useful during inference
def forward(self, forward_input):
"""
@ -236,16 +213,12 @@ class WaveGlow(torch.nn.Module):
# Upsample spectrogram to size of audio
spect = self.upsample(spect)
assert spect.size(2) >= audio.size(1)
assert(spect.size(2) >= audio.size(1))
if spect.size(2) > audio.size(1):
spect = spect[:, :, : audio.size(1)]
spect = spect[:, :, :audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = []
@ -254,26 +227,26 @@ class WaveGlow(torch.nn.Module):
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:, : self.n_early_size, :])
audio = audio[:, self.n_early_size :, :]
output_audio.append(audio[:,:self.n_early_size,:])
audio = audio[:,self.n_early_size:,:]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = torch.exp(log_s) * audio_1 + b
audio_1 = torch.exp(log_s)*audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
audio = torch.cat([audio_0, audio_1],1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
return torch.cat(output_audio,1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect = self.upsample(spect)
@ -282,52 +255,41 @@ class WaveGlow(torch.nn.Module):
spect = spect[:, :, :-time_cutoff]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
if spect.type() == "torch.cuda.HalfTensor":
audio = torch.cuda.HalfTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
if spect.type() == 'torch.HalfTensor':
audio = torch.HalfTensor(spect.size(0),
self.n_remaining_channels,
spect.size(2)).normal_()
else:
# cuda.FloatTensor -> FloatTensor
audio = torch.FloatTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
audio = torch.FloatTensor(spect.size(0),
self.n_remaining_channels,
spect.size(2)).normal_()
audio = torch.autograd.Variable(sigma * audio)
audio = torch.autograd.Variable(sigma*audio)
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b) / torch.exp(s)
audio = torch.cat([audio_0, audio_1], 1)
audio_1 = (audio_1 - b)/torch.exp(s)
audio = torch.cat([audio_0, audio_1],1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.type() == "torch.cuda.HalfTensor":
z = torch.cuda.HalfTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
if spect.type() == 'torch.HalfTensor':
z = torch.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
else:
# cuda.FloatTensor -> FloatTensor
z = torch.FloatTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
audio = torch.cat((sigma * z, audio), 1)
z = torch.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
audio = torch.cat((sigma*z, audio),1)
audio = (
audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data
)
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
return audio
@staticmethod
@ -336,7 +298,7 @@ class WaveGlow(torch.nn.Module):
for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers)
WN.cond_layers = remove(WN.cond_layers)
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow

349
glow_old.py Normal file
View File

@ -0,0 +1,349 @@
# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.nn.functional.tanh(in_act[:, :n_channels_int, :])
s_act = torch.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class WaveGlowLoss(torch.nn.Module):
def __init__(self, sigma=1.0):
super(WaveGlowLoss, self).__init__()
self.sigma = sigma
def forward(self, model_output):
z, log_s_list, log_det_W_list = model_output
for i, log_s in enumerate(log_s_list):
if i == 0:
log_s_total = torch.sum(log_s)
log_det_W_total = log_det_W_list[i]
else:
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = (
torch.sum(z * z) / (2 * self.sigma * self.sigma)
- log_s_total
- log_det_W_total
)
return loss / (z.size(0) * z.size(1) * z.size(2))
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(
c, c, kernel_size=1, stride=1, padding=0, bias=False
)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W = W.view(c, c, 1)
self.conv.weight.data = W
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, "W_inverse"):
# Reverse computation
W_inverse = W.inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == "torch.cuda.HalfTensor":
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary
difference from WaveNet is the convolutions need not be causal. There is
also no dilation size reset. The dilation only doubles on each layer
"""
def __init__(
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert n_channels % 2 == 0
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.cond_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name="weight")
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
for i in range(n_layers):
dilation = 2 ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
n_channels,
2 * n_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
self.cond_layers.append(cond_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * n_channels
else:
res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(
res_skip_layer, name="weight"
)
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
for i in range(self.n_layers):
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
self.cond_layers[i](spect),
torch.IntTensor([self.n_channels]),
)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
audio = res_skip_acts[:, : self.n_channels, :] + audio
skip_acts = res_skip_acts[:, self.n_channels :, :]
else:
skip_acts = res_skip_acts
if i == 0:
output = skip_acts
else:
output = skip_acts + output
return self.end(output)
class WaveGlow(torch.nn.Module):
def __init__(
self,
n_mel_channels,
n_flows,
n_group,
n_early_every,
n_early_size,
WN_config,
):
super(WaveGlow, self).__init__()
self.upsample = torch.nn.ConvTranspose1d(
n_mel_channels, n_mel_channels, 1024, stride=256
)
assert n_group % 2 == 0
self.n_flows = n_flows
self.n_group = n_group
self.n_early_every = n_early_every
self.n_early_size = n_early_size
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_group / 2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_group
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size / 2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels
# Useful during inference
def forward(self, forward_input):
"""
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
forward_input[1] = audio: batch x time
"""
spect, audio = forward_input
# Upsample spectrogram to size of audio
spect = self.upsample(spect)
assert spect.size(2) >= audio.size(1)
if spect.size(2) > audio.size(1):
spect = spect[:, :, : audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = []
log_s_list = []
log_det_W_list = []
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:, : self.n_early_size, :])
audio = audio[:, self.n_early_size :, :]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = torch.exp(log_s) * audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect = self.upsample(spect)
# trim conv artifacts. maybe pad spec to kernel multiple
time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
spect = spect[:, :, :-time_cutoff]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
if spect.type() == "torch.cuda.HalfTensor":
audio = torch.cuda.HalfTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
else:
# cuda.FloatTensor -> FloatTensor
audio = torch.FloatTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
audio = torch.autograd.Variable(sigma * audio)
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b) / torch.exp(s)
audio = torch.cat([audio_0, audio_1], 1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.type() == "torch.cuda.HalfTensor":
z = torch.cuda.HalfTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
else:
# cuda.FloatTensor -> FloatTensor
z = torch.FloatTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
audio = torch.cat((sigma * z, audio), 1)
audio = (
audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data
)
return audio
@staticmethod
def remove_weightnorm(model):
waveglow = model
for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers)
WN.cond_layers = remove(WN.cond_layers)
WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow
def remove(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
old_conv = torch.nn.utils.remove_weight_norm(old_conv)
new_conv_list.append(old_conv)
return new_conv_list

View File

@ -7,19 +7,19 @@ class Denoiser(torch.nn.Module):
""" Removes model bias from audio produced with waveglow """
def __init__(self, waveglow, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros'):
win_length=1024, mode='zeros', n_mel_channels=80,):
super(Denoiser, self).__init__()
self.stft = STFT(filter_length=filter_length,
hop_length=int(filter_length/n_overlap),
win_length=win_length).cpu()
if mode == 'zeros':
mel_input = torch.zeros(
(1, 80, 88),
(1, n_mel_channels, 88),
dtype=waveglow.upsample.weight.dtype,
device=waveglow.upsample.weight.device)
elif mode == 'normal':
mel_input = torch.randn(
(1, 80, 88),
(1, n_mel_channels, 88),
dtype=waveglow.upsample.weight.dtype,
device=waveglow.upsample.weight.device)
else:

View File

@ -2,76 +2,79 @@
# import tensorflow as tf
from dataclasses import dataclass
from .text import symbols
# from .text_codec import symbols
@dataclass
class HParams(object):
"""docstring for HParams."""
################################
# Experiment Parameters #
################################
epochs=500
iters_per_checkpoint=1000
seed=1234
dynamic_loss_scaling=True
fp16_run=False
distributed_run=False
dist_backend="nccl"
dist_url="tcp://localhost:54321"
cudnn_enabled=True
cudnn_benchmark=False
ignore_layers=["embedding.weight"]
epochs = 500
iters_per_checkpoint = 1000
seed = 1234
dynamic_loss_scaling = True
fp16_run = False
distributed_run = False
dist_backend = "nccl"
dist_url = "tcp://localhost:54321"
cudnn_enabled = True
cudnn_benchmark = False
ignore_layers = ["embedding.weight"]
################################
# Data Parameters #
################################
load_mel_from_disk=False
training_files="lists/tts_data_train_processed.txt"
validation_files="filelists/tts_data_val_processed.txt"
text_cleaners=["english_cleaners"]
load_mel_from_disk = False
training_files = "lists/tts_data_train_processed.txt"
validation_files = "filelists/tts_data_val_processed.txt"
text_cleaners = ["english_cleaners"]
################################
# Audio Parameters #
################################
max_wav_value=32768.0
sampling_rate=16000
filter_length=1024
hop_length=256
win_length=1024
n_mel_channels=80
mel_fmin=0.0
mel_fmax=8000.0
max_wav_value = 32768.0
sampling_rate = 16000
filter_length = 1024
hop_length = 256
win_length = 1024
n_mel_channels: int = 40
mel_fmin: float = 0.0
mel_fmax: float = 4000.0
################################
# Model Parameters #
################################
n_symbols=len(symbols)
symbols_embedding_dim=512
n_symbols = len(symbols)
symbols_embedding_dim = 512
# Encoder parameters
encoder_kernel_size=5
encoder_n_convolutions=3
encoder_embedding_dim=512
encoder_kernel_size = 5
encoder_n_convolutions = 3
encoder_embedding_dim = 512
# Decoder parameters
n_frames_per_step=1 # currently only 1 is supported
decoder_rnn_dim=1024
prenet_dim=256
max_decoder_steps=1000
gate_threshold=0.5
p_attention_dropout=0.1
p_decoder_dropout=0.1
n_frames_per_step = 1 # currently only 1 is supported
decoder_rnn_dim = 1024
prenet_dim = 256
max_decoder_steps = 1000
gate_threshold = 0.5
p_attention_dropout = 0.1
p_decoder_dropout = 0.1
# Attention parameters
attention_rnn_dim=1024
attention_dim=128
attention_rnn_dim = 1024
attention_dim = 128
# Location Layer parameters
attention_location_n_filters=32
attention_location_kernel_size=31
attention_location_n_filters = 32
attention_location_kernel_size = 31
# Mel-post processing network parameters
postnet_embedding_dim=512
postnet_kernel_size=5
postnet_n_convolutions=5
postnet_embedding_dim = 512
postnet_kernel_size = 5
postnet_n_convolutions = 5
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate=False
learning_rate=1e-3
weight_decay=1e-6
grad_clip_thresh=1.0
batch_size=4
mask_padding=True # set model's padded outputs to padded values
use_saved_learning_rate = False
learning_rate = 1e-3
weight_decay = 1e-6
grad_clip_thresh = 1.0
batch_size = 4
mask_padding = True # set model's padded outputs to padded values