1. update waveglow

2. add gl option and hyperparams to TTSModel
master
Malar Kannan 2019-10-04 15:24:42 +05:30
parent d0d273a698
commit 36c731cad0
4 changed files with 492 additions and 178 deletions

216
glow.py
View File

@ -1,4 +1,3 @@
# -*- coding: utf-8 -*-
# ***************************************************************************** # *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# #
@ -13,18 +12,19 @@
# names of its contributors may be used to endorse or promote products # names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission. # derived from this software without specific prior written permission.
# #
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# #
# ***************************************************************************** # *****************************************************************************
import copy
import torch import torch
from torch.autograd import Variable from torch.autograd import Variable
import torch.nn.functional as F import torch.nn.functional as F
@ -33,9 +33,9 @@ import torch.nn.functional as F
@torch.jit.script @torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0] n_channels_int = n_channels[0]
in_act = input_a + input_b in_act = input_a+input_b
t_act = torch.nn.functional.tanh(in_act[:, :n_channels_int, :]) t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.nn.functional.sigmoid(in_act[:, n_channels_int:, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act acts = t_act * s_act
return acts return acts
@ -55,12 +55,8 @@ class WaveGlowLoss(torch.nn.Module):
log_s_total = log_s_total + torch.sum(log_s) log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i] log_det_W_total += log_det_W_list[i]
loss = ( loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
torch.sum(z * z) / (2 * self.sigma * self.sigma) return loss/(z.size(0)*z.size(1)*z.size(2))
- log_s_total
- log_det_W_total
)
return loss / (z.size(0) * z.size(1) * z.size(2))
class Invertible1x1Conv(torch.nn.Module): class Invertible1x1Conv(torch.nn.Module):
@ -69,19 +65,17 @@ class Invertible1x1Conv(torch.nn.Module):
of its weight matrix. If reverse=True it does convolution with of its weight matrix. If reverse=True it does convolution with
inverse inverse
""" """
def __init__(self, c): def __init__(self, c):
super(Invertible1x1Conv, self).__init__() super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d( self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
c, c, kernel_size=1, stride=1, padding=0, bias=False bias=False)
)
# Sample a random orthonormal matrix to initialize weights # Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0] W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0 # Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0: if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0] W[:,0] = -1*W[:,0]
W = W.view(c, c, 1) W = W.view(c, c, 1)
self.conv.weight.data = W self.conv.weight.data = W
@ -92,11 +86,11 @@ class Invertible1x1Conv(torch.nn.Module):
W = self.conv.weight.squeeze() W = self.conv.weight.squeeze()
if reverse: if reverse:
if not hasattr(self, "W_inverse"): if not hasattr(self, 'W_inverse'):
# Reverse computation # Reverse computation
W_inverse = W.inverse() W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None]) W_inverse = Variable(W_inverse[..., None])
if z.type() == "torch.cuda.HalfTensor": if z.type() == 'torch.HalfTensor':
W_inverse = W_inverse.half() W_inverse = W_inverse.half()
self.W_inverse = W_inverse self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
@ -110,102 +104,86 @@ class Invertible1x1Conv(torch.nn.Module):
class WN(torch.nn.Module): class WN(torch.nn.Module):
""" """
This is the WaveNet like layer for the affine coupling. The primary This is the WaveNet like layer for the affine coupling. The primary difference
difference from WaveNet is the convolutions need not be causal. There is from WaveNet is the convolutions need not be causal. There is also no dilation
also no dilation size reset. The dilation only doubles on each layer size reset. The dilation only doubles on each layer
""" """
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
def __init__( kernel_size):
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
super(WN, self).__init__() super(WN, self).__init__()
assert kernel_size % 2 == 1 assert(kernel_size % 2 == 1)
assert n_channels % 2 == 0 assert(n_channels % 2 == 0)
self.n_layers = n_layers self.n_layers = n_layers
self.n_channels = n_channels self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList() self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList()
self.cond_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1) start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name="weight") start = torch.nn.utils.weight_norm(start, name='weight')
self.start = start self.start = start
# Initializing last layer to 0 makes the affine coupling layers # Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability # do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end.weight.data.zero_() end.weight.data.zero_()
end.bias.data.zero_() end.bias.data.zero_()
self.end = end self.end = end
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers): for i in range(n_layers):
dilation = 2 ** i dilation = 2 ** i
padding = int((kernel_size * dilation - dilation) / 2) padding = int((kernel_size*dilation - dilation)/2)
in_layer = torch.nn.Conv1d( in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size,
n_channels, dilation=dilation, padding=padding)
2 * n_channels, in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer) self.in_layers.append(in_layer)
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
self.cond_layers.append(cond_layer)
# last one is not necessary # last one is not necessary
if i < n_layers - 1: if i < n_layers - 1:
res_skip_channels = 2 * n_channels res_skip_channels = 2*n_channels
else: else:
res_skip_channels = n_channels res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm( res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
res_skip_layer, name="weight"
)
self.res_skip_layers.append(res_skip_layer) self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input): def forward(self, forward_input):
audio, spect = forward_input audio, spect = forward_input
audio = self.start(audio) audio = self.start(audio)
output = torch.zeros_like(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
spect = self.cond_layer(spect)
for i in range(self.n_layers): for i in range(self.n_layers):
spect_offset = i*2*self.n_channels
acts = fused_add_tanh_sigmoid_multiply( acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio), self.in_layers[i](audio),
self.cond_layers[i](spect), spect[:,spect_offset:spect_offset+2*self.n_channels,:],
torch.IntTensor([self.n_channels]), n_channels_tensor)
)
res_skip_acts = self.res_skip_layers[i](acts) res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1: if i < self.n_layers - 1:
audio = res_skip_acts[:, : self.n_channels, :] + audio audio = audio + res_skip_acts[:,:self.n_channels,:]
skip_acts = res_skip_acts[:, self.n_channels :, :] output = output + res_skip_acts[:,self.n_channels:,:]
else: else:
skip_acts = res_skip_acts output = output + res_skip_acts
if i == 0:
output = skip_acts
else:
output = skip_acts + output
return self.end(output) return self.end(output)
class WaveGlow(torch.nn.Module): class WaveGlow(torch.nn.Module):
def __init__( def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
self, n_early_size, WN_config):
n_mel_channels,
n_flows,
n_group,
n_early_every,
n_early_size,
WN_config,
):
super(WaveGlow, self).__init__() super(WaveGlow, self).__init__()
self.upsample = torch.nn.ConvTranspose1d( self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
n_mel_channels, n_mel_channels, 1024, stride=256 n_mel_channels,
) 1024, stride=256)
assert n_group % 2 == 0 assert(n_group % 2 == 0)
self.n_flows = n_flows self.n_flows = n_flows
self.n_group = n_group self.n_group = n_group
self.n_early_every = n_early_every self.n_early_every = n_early_every
@ -213,19 +191,18 @@ class WaveGlow(torch.nn.Module):
self.WN = torch.nn.ModuleList() self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList() self.convinv = torch.nn.ModuleList()
n_half = int(n_group / 2) n_half = int(n_group/2)
# Set up layers with the right sizes based on how many dimensions # Set up layers with the right sizes based on how many dimensions
# have been output already # have been output already
n_remaining_channels = n_group n_remaining_channels = n_group
for k in range(n_flows): for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0: if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size / 2) n_half = n_half - int(self.n_early_size/2)
n_remaining_channels = n_remaining_channels - self.n_early_size n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels)) self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config)) self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels self.n_remaining_channels = n_remaining_channels # Useful during inference
# Useful during inference
def forward(self, forward_input): def forward(self, forward_input):
""" """
@ -236,16 +213,12 @@ class WaveGlow(torch.nn.Module):
# Upsample spectrogram to size of audio # Upsample spectrogram to size of audio
spect = self.upsample(spect) spect = self.upsample(spect)
assert spect.size(2) >= audio.size(1) assert(spect.size(2) >= audio.size(1))
if spect.size(2) > audio.size(1): if spect.size(2) > audio.size(1):
spect = spect[:, :, : audio.size(1)] spect = spect[:, :, :audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = ( spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = [] output_audio = []
@ -254,26 +227,26 @@ class WaveGlow(torch.nn.Module):
for k in range(self.n_flows): for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0: if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:, : self.n_early_size, :]) output_audio.append(audio[:,:self.n_early_size,:])
audio = audio[:, self.n_early_size :, :] audio = audio[:,self.n_early_size:,:]
audio, log_det_W = self.convinv[k](audio) audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W) log_det_W_list.append(log_det_W)
n_half = int(audio.size(1) / 2) n_half = int(audio.size(1)/2)
audio_0 = audio[:, :n_half, :] audio_0 = audio[:,:n_half,:]
audio_1 = audio[:, n_half:, :] audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect)) output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :] log_s = output[:, n_half:, :]
b = output[:, :n_half, :] b = output[:, :n_half, :]
audio_1 = torch.exp(log_s) * audio_1 + b audio_1 = torch.exp(log_s)*audio_1 + b
log_s_list.append(log_s) log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1) audio = torch.cat([audio_0, audio_1],1)
output_audio.append(audio) output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list return torch.cat(output_audio,1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0): def infer(self, spect, sigma=1.0):
spect = self.upsample(spect) spect = self.upsample(spect)
@ -282,52 +255,41 @@ class WaveGlow(torch.nn.Module):
spect = spect[:, :, :-time_cutoff] spect = spect[:, :, :-time_cutoff]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = ( spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
if spect.type() == "torch.cuda.HalfTensor": if spect.type() == 'torch.HalfTensor':
audio = torch.cuda.HalfTensor( audio = torch.HalfTensor(spect.size(0),
spect.size(0), self.n_remaining_channels, spect.size(2) self.n_remaining_channels,
).normal_() spect.size(2)).normal_()
else: else:
# cuda.FloatTensor -> FloatTensor audio = torch.FloatTensor(spect.size(0),
audio = torch.FloatTensor( self.n_remaining_channels,
spect.size(0), self.n_remaining_channels, spect.size(2) spect.size(2)).normal_()
).normal_()
audio = torch.autograd.Variable(sigma * audio) audio = torch.autograd.Variable(sigma*audio)
for k in reversed(range(self.n_flows)): for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1) / 2) n_half = int(audio.size(1)/2)
audio_0 = audio[:, :n_half, :] audio_0 = audio[:,:n_half,:]
audio_1 = audio[:, n_half:, :] audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect)) output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :] s = output[:, n_half:, :]
b = output[:, :n_half, :] b = output[:, :n_half, :]
audio_1 = (audio_1 - b) / torch.exp(s) audio_1 = (audio_1 - b)/torch.exp(s)
audio = torch.cat([audio_0, audio_1], 1) audio = torch.cat([audio_0, audio_1],1)
audio = self.convinv[k](audio, reverse=True) audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0: if k % self.n_early_every == 0 and k > 0:
if spect.type() == "torch.cuda.HalfTensor": if spect.type() == 'torch.HalfTensor':
z = torch.cuda.HalfTensor( z = torch.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
else: else:
# cuda.FloatTensor -> FloatTensor z = torch.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
z = torch.FloatTensor( audio = torch.cat((sigma*z, audio),1)
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
audio = torch.cat((sigma * z, audio), 1)
audio = ( audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data
)
return audio return audio
@staticmethod @staticmethod
@ -336,7 +298,7 @@ class WaveGlow(torch.nn.Module):
for WN in waveglow.WN: for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start) WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers) WN.in_layers = remove(WN.in_layers)
WN.cond_layers = remove(WN.cond_layers) WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.res_skip_layers = remove(WN.res_skip_layers) WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow return waveglow

349
glow_old.py Normal file
View File

@ -0,0 +1,349 @@
# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.nn.functional.tanh(in_act[:, :n_channels_int, :])
s_act = torch.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class WaveGlowLoss(torch.nn.Module):
def __init__(self, sigma=1.0):
super(WaveGlowLoss, self).__init__()
self.sigma = sigma
def forward(self, model_output):
z, log_s_list, log_det_W_list = model_output
for i, log_s in enumerate(log_s_list):
if i == 0:
log_s_total = torch.sum(log_s)
log_det_W_total = log_det_W_list[i]
else:
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = (
torch.sum(z * z) / (2 * self.sigma * self.sigma)
- log_s_total
- log_det_W_total
)
return loss / (z.size(0) * z.size(1) * z.size(2))
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(
c, c, kernel_size=1, stride=1, padding=0, bias=False
)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W = W.view(c, c, 1)
self.conv.weight.data = W
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, "W_inverse"):
# Reverse computation
W_inverse = W.inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == "torch.cuda.HalfTensor":
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary
difference from WaveNet is the convolutions need not be causal. There is
also no dilation size reset. The dilation only doubles on each layer
"""
def __init__(
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert n_channels % 2 == 0
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.cond_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name="weight")
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
for i in range(n_layers):
dilation = 2 ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
n_channels,
2 * n_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
self.cond_layers.append(cond_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * n_channels
else:
res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(
res_skip_layer, name="weight"
)
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
for i in range(self.n_layers):
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
self.cond_layers[i](spect),
torch.IntTensor([self.n_channels]),
)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
audio = res_skip_acts[:, : self.n_channels, :] + audio
skip_acts = res_skip_acts[:, self.n_channels :, :]
else:
skip_acts = res_skip_acts
if i == 0:
output = skip_acts
else:
output = skip_acts + output
return self.end(output)
class WaveGlow(torch.nn.Module):
def __init__(
self,
n_mel_channels,
n_flows,
n_group,
n_early_every,
n_early_size,
WN_config,
):
super(WaveGlow, self).__init__()
self.upsample = torch.nn.ConvTranspose1d(
n_mel_channels, n_mel_channels, 1024, stride=256
)
assert n_group % 2 == 0
self.n_flows = n_flows
self.n_group = n_group
self.n_early_every = n_early_every
self.n_early_size = n_early_size
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_group / 2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_group
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size / 2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels
# Useful during inference
def forward(self, forward_input):
"""
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
forward_input[1] = audio: batch x time
"""
spect, audio = forward_input
# Upsample spectrogram to size of audio
spect = self.upsample(spect)
assert spect.size(2) >= audio.size(1)
if spect.size(2) > audio.size(1):
spect = spect[:, :, : audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = []
log_s_list = []
log_det_W_list = []
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:, : self.n_early_size, :])
audio = audio[:, self.n_early_size :, :]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = torch.exp(log_s) * audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect = self.upsample(spect)
# trim conv artifacts. maybe pad spec to kernel multiple
time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
spect = spect[:, :, :-time_cutoff]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
if spect.type() == "torch.cuda.HalfTensor":
audio = torch.cuda.HalfTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
else:
# cuda.FloatTensor -> FloatTensor
audio = torch.FloatTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
audio = torch.autograd.Variable(sigma * audio)
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b) / torch.exp(s)
audio = torch.cat([audio_0, audio_1], 1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.type() == "torch.cuda.HalfTensor":
z = torch.cuda.HalfTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
else:
# cuda.FloatTensor -> FloatTensor
z = torch.FloatTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
audio = torch.cat((sigma * z, audio), 1)
audio = (
audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data
)
return audio
@staticmethod
def remove_weightnorm(model):
waveglow = model
for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers)
WN.cond_layers = remove(WN.cond_layers)
WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow
def remove(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
old_conv = torch.nn.utils.remove_weight_norm(old_conv)
new_conv_list.append(old_conv)
return new_conv_list

View File

@ -7,19 +7,19 @@ class Denoiser(torch.nn.Module):
""" Removes model bias from audio produced with waveglow """ """ Removes model bias from audio produced with waveglow """
def __init__(self, waveglow, filter_length=1024, n_overlap=4, def __init__(self, waveglow, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros'): win_length=1024, mode='zeros', n_mel_channels=80,):
super(Denoiser, self).__init__() super(Denoiser, self).__init__()
self.stft = STFT(filter_length=filter_length, self.stft = STFT(filter_length=filter_length,
hop_length=int(filter_length/n_overlap), hop_length=int(filter_length/n_overlap),
win_length=win_length).cpu() win_length=win_length).cpu()
if mode == 'zeros': if mode == 'zeros':
mel_input = torch.zeros( mel_input = torch.zeros(
(1, 80, 88), (1, n_mel_channels, 88),
dtype=waveglow.upsample.weight.dtype, dtype=waveglow.upsample.weight.dtype,
device=waveglow.upsample.weight.device) device=waveglow.upsample.weight.device)
elif mode == 'normal': elif mode == 'normal':
mel_input = torch.randn( mel_input = torch.randn(
(1, 80, 88), (1, n_mel_channels, 88),
dtype=waveglow.upsample.weight.dtype, dtype=waveglow.upsample.weight.dtype,
device=waveglow.upsample.weight.device) device=waveglow.upsample.weight.device)
else: else:

View File

@ -2,76 +2,79 @@
# import tensorflow as tf # import tensorflow as tf
from dataclasses import dataclass from dataclasses import dataclass
from .text import symbols from .text import symbols
# from .text_codec import symbols # from .text_codec import symbols
@dataclass @dataclass
class HParams(object): class HParams(object):
"""docstring for HParams.""" """docstring for HParams."""
################################ ################################
# Experiment Parameters # # Experiment Parameters #
################################ ################################
epochs=500 epochs = 500
iters_per_checkpoint=1000 iters_per_checkpoint = 1000
seed=1234 seed = 1234
dynamic_loss_scaling=True dynamic_loss_scaling = True
fp16_run=False fp16_run = False
distributed_run=False distributed_run = False
dist_backend="nccl" dist_backend = "nccl"
dist_url="tcp://localhost:54321" dist_url = "tcp://localhost:54321"
cudnn_enabled=True cudnn_enabled = True
cudnn_benchmark=False cudnn_benchmark = False
ignore_layers=["embedding.weight"] ignore_layers = ["embedding.weight"]
################################ ################################
# Data Parameters # # Data Parameters #
################################ ################################
load_mel_from_disk=False load_mel_from_disk = False
training_files="lists/tts_data_train_processed.txt" training_files = "lists/tts_data_train_processed.txt"
validation_files="filelists/tts_data_val_processed.txt" validation_files = "filelists/tts_data_val_processed.txt"
text_cleaners=["english_cleaners"] text_cleaners = ["english_cleaners"]
################################ ################################
# Audio Parameters # # Audio Parameters #
################################ ################################
max_wav_value=32768.0 max_wav_value = 32768.0
sampling_rate=16000 sampling_rate = 16000
filter_length=1024 filter_length = 1024
hop_length=256 hop_length = 256
win_length=1024 win_length = 1024
n_mel_channels=80 n_mel_channels: int = 40
mel_fmin=0.0 mel_fmin: float = 0.0
mel_fmax=8000.0 mel_fmax: float = 4000.0
################################ ################################
# Model Parameters # # Model Parameters #
################################ ################################
n_symbols=len(symbols) n_symbols = len(symbols)
symbols_embedding_dim=512 symbols_embedding_dim = 512
# Encoder parameters # Encoder parameters
encoder_kernel_size=5 encoder_kernel_size = 5
encoder_n_convolutions=3 encoder_n_convolutions = 3
encoder_embedding_dim=512 encoder_embedding_dim = 512
# Decoder parameters # Decoder parameters
n_frames_per_step=1 # currently only 1 is supported n_frames_per_step = 1 # currently only 1 is supported
decoder_rnn_dim=1024 decoder_rnn_dim = 1024
prenet_dim=256 prenet_dim = 256
max_decoder_steps=1000 max_decoder_steps = 1000
gate_threshold=0.5 gate_threshold = 0.5
p_attention_dropout=0.1 p_attention_dropout = 0.1
p_decoder_dropout=0.1 p_decoder_dropout = 0.1
# Attention parameters # Attention parameters
attention_rnn_dim=1024 attention_rnn_dim = 1024
attention_dim=128 attention_dim = 128
# Location Layer parameters # Location Layer parameters
attention_location_n_filters=32 attention_location_n_filters = 32
attention_location_kernel_size=31 attention_location_kernel_size = 31
# Mel-post processing network parameters # Mel-post processing network parameters
postnet_embedding_dim=512 postnet_embedding_dim = 512
postnet_kernel_size=5 postnet_kernel_size = 5
postnet_n_convolutions=5 postnet_n_convolutions = 5
################################ ################################
# Optimization Hyperparameters # # Optimization Hyperparameters #
################################ ################################
use_saved_learning_rate=False use_saved_learning_rate = False
learning_rate=1e-3 learning_rate = 1e-3
weight_decay=1e-6 weight_decay = 1e-6
grad_clip_thresh=1.0 grad_clip_thresh = 1.0
batch_size=4 batch_size = 4
mask_padding=True # set model's padded outputs to padded values mask_padding = True # set model's padded outputs to padded values