compatibility to pretrained modesl

Malar 2019-10-12 14:40:58 +05:30
parent 5a30069f0a
commit 342b230b93
3 changed files with 218 additions and 218 deletions

216
glow.py
View File

@ -1,3 +1,4 @@
# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -12,19 +13,18 @@
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import copy
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@ -33,9 +33,9 @@ import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a+input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
in_act = input_a + input_b
t_act = torch.nn.functional.tanh(in_act[:, :n_channels_int, :])
s_act = torch.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
@ -55,8 +55,12 @@ class WaveGlowLoss(torch.nn.Module):
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
return loss/(z.size(0)*z.size(1)*z.size(2))
loss = (
torch.sum(z * z) / (2 * self.sigma * self.sigma)
- log_s_total
- log_det_W_total
)
return loss / (z.size(0) * z.size(1) * z.size(2))
class Invertible1x1Conv(torch.nn.Module):
@ -65,17 +69,19 @@ class Invertible1x1Conv(torch.nn.Module):
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
bias=False)
self.conv = torch.nn.Conv1d(
c, c, kernel_size=1, stride=1, padding=0, bias=False
)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:,0] = -1*W[:,0]
W[:, 0] = -1 * W[:, 0]
W = W.view(c, c, 1)
self.conv.weight.data = W
@ -86,11 +92,11 @@ class Invertible1x1Conv(torch.nn.Module):
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, 'W_inverse'):
if not hasattr(self, "W_inverse"):
# Reverse computation
W_inverse = W.float().inverse()
W_inverse = W.inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == 'torch.HalfTensor':
if z.type() == "torch.cuda.HalfTensor":
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
@ -104,86 +110,102 @@ class Invertible1x1Conv(torch.nn.Module):
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary difference
from WaveNet is the convolutions need not be causal. There is also no dilation
size reset. The dilation only doubles on each layer
This is the WaveNet like layer for the affine coupling. The primary
difference from WaveNet is the convolutions need not be causal. There is
also no dilation size reset. The dilation only doubles on each layer
"""
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
kernel_size):
def __init__(
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
assert(n_channels % 2 == 0)
assert kernel_size % 2 == 1
assert n_channels % 2 == 0
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.cond_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name='weight')
start = torch.nn.utils.weight_norm(start, name="weight")
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = 2 ** i
padding = int((kernel_size*dilation - dilation)/2)
in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
n_channels,
2 * n_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
self.cond_layers.append(cond_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2*n_channels
res_skip_channels = 2 * n_channels
else:
res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
res_skip_layer = torch.nn.utils.weight_norm(
res_skip_layer, name="weight"
)
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
output = torch.zeros_like(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
spect = self.cond_layer(spect)
for i in range(self.n_layers):
spect_offset = i*2*self.n_channels
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
spect[:,spect_offset:spect_offset+2*self.n_channels,:],
n_channels_tensor)
self.cond_layers[i](spect),
torch.IntTensor([self.n_channels]),
)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
audio = audio + res_skip_acts[:,:self.n_channels,:]
output = output + res_skip_acts[:,self.n_channels:,:]
audio = res_skip_acts[:, : self.n_channels, :] + audio
skip_acts = res_skip_acts[:, self.n_channels :, :]
else:
output = output + res_skip_acts
skip_acts = res_skip_acts
if i == 0:
output = skip_acts
else:
output = skip_acts + output
return self.end(output)
class WaveGlow(torch.nn.Module):
def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
n_early_size, WN_config):
def __init__(
self,
n_mel_channels,
n_flows,
n_group,
n_early_every,
n_early_size,
WN_config,
):
super(WaveGlow, self).__init__()
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
n_mel_channels,
1024, stride=256)
assert(n_group % 2 == 0)
self.upsample = torch.nn.ConvTranspose1d(
n_mel_channels, n_mel_channels, 1024, stride=256
)
assert n_group % 2 == 0
self.n_flows = n_flows
self.n_group = n_group
self.n_early_every = n_early_every
@ -191,18 +213,19 @@ class WaveGlow(torch.nn.Module):
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_group/2)
n_half = int(n_group / 2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_group
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size/2)
n_half = n_half - int(self.n_early_size / 2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels # Useful during inference
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels
# Useful during inference
def forward(self, forward_input):
"""
@ -213,12 +236,16 @@ class WaveGlow(torch.nn.Module):
# Upsample spectrogram to size of audio
spect = self.upsample(spect)
assert(spect.size(2) >= audio.size(1))
assert spect.size(2) >= audio.size(1)
if spect.size(2) > audio.size(1):
spect = spect[:, :, :audio.size(1)]
spect = spect[:, :, : audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = []
@ -227,26 +254,26 @@ class WaveGlow(torch.nn.Module):
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:,:self.n_early_size,:])
audio = audio[:,self.n_early_size:,:]
output_audio.append(audio[:, : self.n_early_size, :])
audio = audio[:, self.n_early_size :, :]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = torch.exp(log_s)*audio_1 + b
audio_1 = torch.exp(log_s) * audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1],1)
audio = torch.cat([audio_0, audio_1], 1)
output_audio.append(audio)
return torch.cat(output_audio,1), log_s_list, log_det_W_list
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect = self.upsample(spect)
@ -255,41 +282,52 @@ class WaveGlow(torch.nn.Module):
spect = spect[:, :, :-time_cutoff]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
if spect.type() == 'torch.HalfTensor':
audio = torch.HalfTensor(spect.size(0),
self.n_remaining_channels,
spect.size(2)).normal_()
if spect.type() == "torch.cuda.HalfTensor":
audio = torch.cuda.HalfTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
else:
audio = torch.FloatTensor(spect.size(0),
self.n_remaining_channels,
spect.size(2)).normal_()
# cuda.FloatTensor -> FloatTensor
audio = torch.FloatTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
audio = torch.autograd.Variable(sigma*audio)
audio = torch.autograd.Variable(sigma * audio)
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b)/torch.exp(s)
audio = torch.cat([audio_0, audio_1],1)
audio_1 = (audio_1 - b) / torch.exp(s)
audio = torch.cat([audio_0, audio_1], 1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.type() == 'torch.HalfTensor':
z = torch.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
if spect.type() == "torch.cuda.HalfTensor":
z = torch.cuda.HalfTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
else:
z = torch.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
audio = torch.cat((sigma*z, audio),1)
# cuda.FloatTensor -> FloatTensor
z = torch.FloatTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
audio = torch.cat((sigma * z, audio), 1)
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
audio = (
audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data
)
return audio
@staticmethod
@ -298,7 +336,7 @@ class WaveGlow(torch.nn.Module):
for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers)
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.cond_layers = remove(WN.cond_layers)
WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow

View File

@ -1,4 +1,3 @@
# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -13,18 +12,19 @@
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import copy
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@ -33,9 +33,9 @@ import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.nn.functional.tanh(in_act[:, :n_channels_int, :])
s_act = torch.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
in_act = input_a+input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
@ -55,12 +55,8 @@ class WaveGlowLoss(torch.nn.Module):
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = (
torch.sum(z * z) / (2 * self.sigma * self.sigma)
- log_s_total
- log_det_W_total
)
return loss / (z.size(0) * z.size(1) * z.size(2))
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
return loss/(z.size(0)*z.size(1)*z.size(2))
class Invertible1x1Conv(torch.nn.Module):
@ -69,19 +65,17 @@ class Invertible1x1Conv(torch.nn.Module):
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(
c, c, kernel_size=1, stride=1, padding=0, bias=False
)
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
bias=False)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W[:,0] = -1*W[:,0]
W = W.view(c, c, 1)
self.conv.weight.data = W
@ -92,11 +86,11 @@ class Invertible1x1Conv(torch.nn.Module):
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, "W_inverse"):
if not hasattr(self, 'W_inverse'):
# Reverse computation
W_inverse = W.inverse()
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == "torch.cuda.HalfTensor":
if z.type() == 'torch.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
@ -110,102 +104,86 @@ class Invertible1x1Conv(torch.nn.Module):
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary
difference from WaveNet is the convolutions need not be causal. There is
also no dilation size reset. The dilation only doubles on each layer
This is the WaveNet like layer for the affine coupling. The primary difference
from WaveNet is the convolutions need not be causal. There is also no dilation
size reset. The dilation only doubles on each layer
"""
def __init__(
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
kernel_size):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert n_channels % 2 == 0
assert(kernel_size % 2 == 1)
assert(n_channels % 2 == 0)
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.cond_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name="weight")
start = torch.nn.utils.weight_norm(start, name='weight')
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = 2 ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
n_channels,
2 * n_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
padding = int((kernel_size*dilation - dilation)/2)
in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
self.in_layers.append(in_layer)
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
self.cond_layers.append(cond_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * n_channels
res_skip_channels = 2*n_channels
else:
res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(
res_skip_layer, name="weight"
)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
output = torch.zeros_like(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
spect = self.cond_layer(spect)
for i in range(self.n_layers):
spect_offset = i*2*self.n_channels
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
self.cond_layers[i](spect),
torch.IntTensor([self.n_channels]),
)
spect[:,spect_offset:spect_offset+2*self.n_channels,:],
n_channels_tensor)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
audio = res_skip_acts[:, : self.n_channels, :] + audio
skip_acts = res_skip_acts[:, self.n_channels :, :]
audio = audio + res_skip_acts[:,:self.n_channels,:]
output = output + res_skip_acts[:,self.n_channels:,:]
else:
skip_acts = res_skip_acts
output = output + res_skip_acts
if i == 0:
output = skip_acts
else:
output = skip_acts + output
return self.end(output)
class WaveGlow(torch.nn.Module):
def __init__(
self,
n_mel_channels,
n_flows,
n_group,
n_early_every,
n_early_size,
WN_config,
):
def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
n_early_size, WN_config):
super(WaveGlow, self).__init__()
self.upsample = torch.nn.ConvTranspose1d(
n_mel_channels, n_mel_channels, 1024, stride=256
)
assert n_group % 2 == 0
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
n_mel_channels,
1024, stride=256)
assert(n_group % 2 == 0)
self.n_flows = n_flows
self.n_group = n_group
self.n_early_every = n_early_every
@ -213,19 +191,18 @@ class WaveGlow(torch.nn.Module):
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_group / 2)
n_half = int(n_group/2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_group
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size / 2)
n_half = n_half - int(self.n_early_size/2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels
# Useful during inference
self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config))
self.n_remaining_channels = n_remaining_channels # Useful during inference
def forward(self, forward_input):
"""
@ -236,16 +213,12 @@ class WaveGlow(torch.nn.Module):
# Upsample spectrogram to size of audio
spect = self.upsample(spect)
assert spect.size(2) >= audio.size(1)
assert(spect.size(2) >= audio.size(1))
if spect.size(2) > audio.size(1):
spect = spect[:, :, : audio.size(1)]
spect = spect[:, :, :audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = []
@ -254,26 +227,26 @@ class WaveGlow(torch.nn.Module):
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:, : self.n_early_size, :])
audio = audio[:, self.n_early_size :, :]
output_audio.append(audio[:,:self.n_early_size,:])
audio = audio[:,self.n_early_size:,:]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = torch.exp(log_s) * audio_1 + b
audio_1 = torch.exp(log_s)*audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
audio = torch.cat([audio_0, audio_1],1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
return torch.cat(output_audio,1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect = self.upsample(spect)
@ -282,52 +255,41 @@ class WaveGlow(torch.nn.Module):
spect = spect[:, :, :-time_cutoff]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous()
.view(spect.size(0), spect.size(1), -1)
.permute(0, 2, 1)
)
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
if spect.type() == "torch.cuda.HalfTensor":
audio = torch.cuda.HalfTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
if spect.type() == 'torch.HalfTensor':
audio = torch.HalfTensor(spect.size(0),
self.n_remaining_channels,
spect.size(2)).normal_()
else:
# cuda.FloatTensor -> FloatTensor
audio = torch.FloatTensor(
spect.size(0), self.n_remaining_channels, spect.size(2)
).normal_()
audio = torch.FloatTensor(spect.size(0),
self.n_remaining_channels,
spect.size(2)).normal_()
audio = torch.autograd.Variable(sigma * audio)
audio = torch.autograd.Variable(sigma*audio)
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b) / torch.exp(s)
audio = torch.cat([audio_0, audio_1], 1)
audio_1 = (audio_1 - b)/torch.exp(s)
audio = torch.cat([audio_0, audio_1],1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.type() == "torch.cuda.HalfTensor":
z = torch.cuda.HalfTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
if spect.type() == 'torch.HalfTensor':
z = torch.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
else:
# cuda.FloatTensor -> FloatTensor
z = torch.FloatTensor(
spect.size(0), self.n_early_size, spect.size(2)
).normal_()
audio = torch.cat((sigma * z, audio), 1)
z = torch.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_()
audio = torch.cat((sigma*z, audio),1)
audio = (
audio.permute(0, 2, 1).contiguous().view(audio.size(0), -1).data
)
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
return audio
@staticmethod
@ -336,7 +298,7 @@ class WaveGlow(torch.nn.Module):
for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers)
WN.cond_layers = remove(WN.cond_layers)
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow

View File

@ -39,9 +39,9 @@ class HParams(object):
filter_length = 1024
hop_length = 256
win_length = 1024
n_mel_channels: int = 40
n_mel_channels: int = 80
mel_fmin: float = 0.0
mel_fmax: float = 4000.0
mel_fmax: float = 8000.0
################################
# Model Parameters #
################################