mirror of https://github.com/malarinv/tacotron2
data_utils.py: rewrite
parent
fc0cf6a89a
commit
1683a57ae5
|
|
@ -14,9 +14,8 @@ class TextMelLoader(torch.utils.data.Dataset):
|
|||
2) normalizes text and converts them to sequences of one-hot vectors
|
||||
3) computes mel-spectrograms from audio files.
|
||||
"""
|
||||
def __init__(self, audiopaths_and_text, hparams, shuffle=True):
|
||||
self.audiopaths_and_text = load_filepaths_and_text(
|
||||
audiopaths_and_text, hparams.sort_by_length)
|
||||
def __init__(self, audiopaths_and_text, hparams):
|
||||
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||||
self.text_cleaners = hparams.text_cleaners
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
|
|
@ -26,8 +25,7 @@ class TextMelLoader(torch.utils.data.Dataset):
|
|||
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
||||
hparams.mel_fmax)
|
||||
random.seed(1234)
|
||||
if shuffle:
|
||||
random.shuffle(self.audiopaths_and_text)
|
||||
random.shuffle(self.audiopaths_and_text)
|
||||
|
||||
def get_mel_text_pair(self, audiopath_and_text):
|
||||
# separate filename and text
|
||||
|
|
@ -38,7 +36,10 @@ class TextMelLoader(torch.utils.data.Dataset):
|
|||
|
||||
def get_mel(self, filename):
|
||||
if not self.load_mel_from_disk:
|
||||
audio = load_wav_to_torch(filename, self.sampling_rate)
|
||||
audio, sampling_rate = load_wav_to_torch(filename)
|
||||
if sampling_rate != self.stft.sampling_rate:
|
||||
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
||||
sampling_rate, self.stft.sampling_rate))
|
||||
audio_norm = audio / self.max_wav_value
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
||||
|
|
@ -87,9 +88,9 @@ class TextMelCollate():
|
|||
text = batch[ids_sorted_decreasing[i]][0]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
|
||||
# Right zero-pad mel-spec with extra single zero vector to mark the end
|
||||
# Right zero-pad mel-spec
|
||||
num_mels = batch[0][1].size(0)
|
||||
max_target_len = max([x[1].size(1) for x in batch]) + 1
|
||||
max_target_len = max([x[1].size(1) for x in batch])
|
||||
if max_target_len % self.n_frames_per_step != 0:
|
||||
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
||||
assert max_target_len % self.n_frames_per_step == 0
|
||||
|
|
@ -103,7 +104,7 @@ class TextMelCollate():
|
|||
for i in range(len(ids_sorted_decreasing)):
|
||||
mel = batch[ids_sorted_decreasing[i]][1]
|
||||
mel_padded[i, :, :mel.size(1)] = mel
|
||||
gate_padded[i, mel.size(1):] = 1
|
||||
gate_padded[i, mel.size(1)-1:] = 1
|
||||
output_lengths[i] = mel.size(1)
|
||||
|
||||
return text_padded, input_lengths, mel_padded, gate_padded, \
|
||||
|
|
|
|||
Loading…
Reference in New Issue