mirror of https://github.com/malarinv/tacotron2
data_utils.py: rewrite
parent
fc0cf6a89a
commit
1683a57ae5
|
|
@ -14,9 +14,8 @@ class TextMelLoader(torch.utils.data.Dataset):
|
||||||
2) normalizes text and converts them to sequences of one-hot vectors
|
2) normalizes text and converts them to sequences of one-hot vectors
|
||||||
3) computes mel-spectrograms from audio files.
|
3) computes mel-spectrograms from audio files.
|
||||||
"""
|
"""
|
||||||
def __init__(self, audiopaths_and_text, hparams, shuffle=True):
|
def __init__(self, audiopaths_and_text, hparams):
|
||||||
self.audiopaths_and_text = load_filepaths_and_text(
|
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||||||
audiopaths_and_text, hparams.sort_by_length)
|
|
||||||
self.text_cleaners = hparams.text_cleaners
|
self.text_cleaners = hparams.text_cleaners
|
||||||
self.max_wav_value = hparams.max_wav_value
|
self.max_wav_value = hparams.max_wav_value
|
||||||
self.sampling_rate = hparams.sampling_rate
|
self.sampling_rate = hparams.sampling_rate
|
||||||
|
|
@ -26,8 +25,7 @@ class TextMelLoader(torch.utils.data.Dataset):
|
||||||
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
||||||
hparams.mel_fmax)
|
hparams.mel_fmax)
|
||||||
random.seed(1234)
|
random.seed(1234)
|
||||||
if shuffle:
|
random.shuffle(self.audiopaths_and_text)
|
||||||
random.shuffle(self.audiopaths_and_text)
|
|
||||||
|
|
||||||
def get_mel_text_pair(self, audiopath_and_text):
|
def get_mel_text_pair(self, audiopath_and_text):
|
||||||
# separate filename and text
|
# separate filename and text
|
||||||
|
|
@ -38,7 +36,10 @@ class TextMelLoader(torch.utils.data.Dataset):
|
||||||
|
|
||||||
def get_mel(self, filename):
|
def get_mel(self, filename):
|
||||||
if not self.load_mel_from_disk:
|
if not self.load_mel_from_disk:
|
||||||
audio = load_wav_to_torch(filename, self.sampling_rate)
|
audio, sampling_rate = load_wav_to_torch(filename)
|
||||||
|
if sampling_rate != self.stft.sampling_rate:
|
||||||
|
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
||||||
|
sampling_rate, self.stft.sampling_rate))
|
||||||
audio_norm = audio / self.max_wav_value
|
audio_norm = audio / self.max_wav_value
|
||||||
audio_norm = audio_norm.unsqueeze(0)
|
audio_norm = audio_norm.unsqueeze(0)
|
||||||
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
||||||
|
|
@ -87,9 +88,9 @@ class TextMelCollate():
|
||||||
text = batch[ids_sorted_decreasing[i]][0]
|
text = batch[ids_sorted_decreasing[i]][0]
|
||||||
text_padded[i, :text.size(0)] = text
|
text_padded[i, :text.size(0)] = text
|
||||||
|
|
||||||
# Right zero-pad mel-spec with extra single zero vector to mark the end
|
# Right zero-pad mel-spec
|
||||||
num_mels = batch[0][1].size(0)
|
num_mels = batch[0][1].size(0)
|
||||||
max_target_len = max([x[1].size(1) for x in batch]) + 1
|
max_target_len = max([x[1].size(1) for x in batch])
|
||||||
if max_target_len % self.n_frames_per_step != 0:
|
if max_target_len % self.n_frames_per_step != 0:
|
||||||
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
||||||
assert max_target_len % self.n_frames_per_step == 0
|
assert max_target_len % self.n_frames_per_step == 0
|
||||||
|
|
@ -103,7 +104,7 @@ class TextMelCollate():
|
||||||
for i in range(len(ids_sorted_decreasing)):
|
for i in range(len(ids_sorted_decreasing)):
|
||||||
mel = batch[ids_sorted_decreasing[i]][1]
|
mel = batch[ids_sorted_decreasing[i]][1]
|
||||||
mel_padded[i, :, :mel.size(1)] = mel
|
mel_padded[i, :, :mel.size(1)] = mel
|
||||||
gate_padded[i, mel.size(1):] = 1
|
gate_padded[i, mel.size(1)-1:] = 1
|
||||||
output_lengths[i] = mel.size(1)
|
output_lengths[i] = mel.size(1)
|
||||||
|
|
||||||
return text_padded, input_lengths, mel_padded, gate_padded, \
|
return text_padded, input_lengths, mel_padded, gate_padded, \
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue