mirror of https://github.com/malarinv/tacotron2
single variable for single gpu model
parent
646ab0d8c8
commit
0d4218fb20
14
train.py
14
train.py
|
|
@ -128,8 +128,13 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus,
|
||||||
pin_memory=False, collate_fn=collate_fn)
|
pin_memory=False, collate_fn=collate_fn)
|
||||||
|
|
||||||
val_loss = 0.0
|
val_loss = 0.0
|
||||||
|
if distributed_run or torch.cuda.device_count() > 1:
|
||||||
|
batch_parser = model.module.parse_batch
|
||||||
|
else:
|
||||||
|
batch_parser = model.parse_batch
|
||||||
|
|
||||||
for i, batch in enumerate(val_loader):
|
for i, batch in enumerate(val_loader):
|
||||||
x, y = model.parse_batch(batch)
|
x, y = batch_parser(batch)
|
||||||
y_pred = model(x)
|
y_pred = model(x)
|
||||||
loss = criterion(y_pred, y)
|
loss = criterion(y_pred, y)
|
||||||
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
||||||
|
|
@ -157,6 +162,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
||||||
if hparams.distributed_run:
|
if hparams.distributed_run:
|
||||||
init_distributed(hparams, n_gpus, rank, group_name)
|
init_distributed(hparams, n_gpus, rank, group_name)
|
||||||
|
|
||||||
|
|
||||||
torch.manual_seed(hparams.seed)
|
torch.manual_seed(hparams.seed)
|
||||||
torch.cuda.manual_seed(hparams.seed)
|
torch.cuda.manual_seed(hparams.seed)
|
||||||
|
|
||||||
|
|
@ -188,6 +194,10 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
||||||
epoch_offset = max(0, int(iteration / len(train_loader)))
|
epoch_offset = max(0, int(iteration / len(train_loader)))
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
|
if distributed_run or torch.cuda.device_count() > 1:
|
||||||
|
batch_parser = model.module.parse_batch
|
||||||
|
else:
|
||||||
|
batch_parser = model.parse_batch
|
||||||
# ================ MAIN TRAINNIG LOOP! ===================
|
# ================ MAIN TRAINNIG LOOP! ===================
|
||||||
for epoch in range(epoch_offset, hparams.epochs):
|
for epoch in range(epoch_offset, hparams.epochs):
|
||||||
print("Epoch: {}".format(epoch))
|
print("Epoch: {}".format(epoch))
|
||||||
|
|
@ -197,7 +207,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
||||||
param_group['lr'] = learning_rate
|
param_group['lr'] = learning_rate
|
||||||
|
|
||||||
model.zero_grad()
|
model.zero_grad()
|
||||||
x, y = model.parse_batch(batch)
|
x, y = batch_parser(batch)
|
||||||
y_pred = model(x)
|
y_pred = model(x)
|
||||||
loss = criterion(y_pred, y)
|
loss = criterion(y_pred, y)
|
||||||
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue